BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24326419)

  • 1. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation.
    Hindle AG; Martin SL
    Am J Physiol Endocrinol Metab; 2014 Feb; 306(3):E284-99. PubMed ID: 24326419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function.
    Ballinger MA; Hess C; Napolitano MW; Bjork JA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2016 Aug; 311(2):R325-36. PubMed ID: 27225952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure.
    Russell RL; O'Neill PH; Epperson LE; Martin SL
    J Comp Physiol B; 2010 Nov; 180(8):1165-72. PubMed ID: 20556614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure.
    MacCannell A; Sinclair K; Friesen-Waldner L; McKenzie CA; Staples JF
    J Comp Physiol B; 2017 Jul; 187(5-6):759-767. PubMed ID: 28324157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.
    Hindle AG; Martin SL
    PLoS One; 2013; 8(8):e71627. PubMed ID: 23951209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator.
    Heim AB; Chung D; Florant GL; Chicco AJ
    Am J Physiol Regul Integr Comp Physiol; 2017 Aug; 313(2):R180-R190. PubMed ID: 28566305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental temperature effects on adipose tissue growth in a hibernator.
    MacCannell ADV; Sinclair KJ; McKenzie CA; Staples JF
    J Exp Biol; 2019 Feb; 222(Pt 3):. PubMed ID: 30563880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.
    Hindle AG; Grabek KR; Epperson LE; Karimpour-Fard A; Martin SL
    Physiol Genomics; 2014 May; 46(10):348-61. PubMed ID: 24642758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annual lipid cycles in hibernators: integration of physiology and behavior.
    Dark J
    Annu Rev Nutr; 2005; 25():469-97. PubMed ID: 16011475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the phosphoproteome of brown adipose tissue during hibernation in the ground squirrel,
    Herinckx G; Hussain N; Opperdoes FR; Storey KB; Rider MH; Vertommen D
    Physiol Genomics; 2017 Sep; 49(9):462-472. PubMed ID: 28698229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays.
    Yan J; Burman A; Nichols C; Alila L; Showe LC; Showe MK; Boyer BB; Barnes BM; Marr TG
    Physiol Genomics; 2006 Apr; 25(2):346-53. PubMed ID: 16464973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation.
    Hindle AG; Karimpour-Fard A; Epperson LE; Hunter LE; Martin SL
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1440-52. PubMed ID: 21865542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator.
    McFarlane SV; Mathers KE; Staples JF
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R434-R442. PubMed ID: 28077390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritization of skeletal muscle growth for emergence from hibernation.
    Hindle AG; Otis JP; Epperson LE; Hornberger TA; Goodman CA; Carey HV; Martin SL
    J Exp Biol; 2015 Jan; 218(Pt 2):276-84. PubMed ID: 25452506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation.
    Jani A; Orlicky DJ; Karimpour-Fard A; Epperson LE; Russell RL; Hunter LE; Martin SL
    Physiol Genomics; 2012 Jul; 44(14):717-27. PubMed ID: 22643061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.
    Biggar Y; Storey KB
    Cryobiology; 2014 Oct; 69(2):333-8. PubMed ID: 25192827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation.
    Hampton M; Melvin RG; Andrews MT
    PLoS One; 2013; 8(12):e85157. PubMed ID: 24386461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature's fat-burning machine: brown adipose tissue in a hibernating mammal.
    Ballinger MA; Andrews MT
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of UCP1 and UCP3 in arctic ground squirrels and relation with mitochondrial proton leak.
    Barger JL; Barnes BM; Boyer BB
    J Appl Physiol (1985); 2006 Jul; 101(1):339-47. PubMed ID: 16782837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR.
    Serkova NJ; Rose JC; Epperson LE; Carey HV; Martin SL
    Physiol Genomics; 2007 Sep; 31(1):15-24. PubMed ID: 17536023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.