BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24326419)

  • 21. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential regulation of uncoupling protein gene homologues in multiple tissues of hibernating ground squirrels.
    Boyer BB; Barnes BM; Lowell BB; Grujic D
    Am J Physiol; 1998 Oct; 275(4):R1232-8. PubMed ID: 9756555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs.
    Lehmer EM; Savage LT; Antolin MF; Biggins DE
    Physiol Biochem Zool; 2006; 79(3):454-67. PubMed ID: 16691512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy.
    Grabek KR; Karimpour-Fard A; Epperson LE; Hindle A; Hunter LE; Martin SL
    Physiol Genomics; 2011 Nov; 43(22):1263-75. PubMed ID: 21914784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hibernation induces oxidative stress and activation of NK-kappaB in ground squirrel intestine.
    Carey HV; Frank CL; Seifert JP
    J Comp Physiol B; 2000 Nov; 170(7):551-9. PubMed ID: 11128446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a lipid-rich depot in the orbital cavity of the thirteen-lined ground squirrel.
    MacCannell ADV; Sinclair KJ; Tattersall GJ; McKenzie CA; Staples JF
    J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30679243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hibernating above the permafrost: effects of ambient temperature and season on expression of metabolic genes in liver and brown adipose tissue of arctic ground squirrels.
    Williams CT; Goropashnaya AV; Buck CL; Fedorov VB; Kohl F; Lee TN; Barnes BM
    J Exp Biol; 2011 Apr; 214(Pt 8):1300-6. PubMed ID: 21430207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circannual rhythm in body temperature, torpor, and sensitivity to A₁ adenosine receptor agonist in arctic ground squirrels.
    Olson JM; Jinka TR; Larson LK; Danielson JJ; Moore JT; Carpluck J; Drew KL
    J Biol Rhythms; 2013 Jun; 28(3):201-7. PubMed ID: 23735499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue-specific telomere dynamics in hibernating arctic ground squirrels (
    Wilbur SM; Barnes BM; Kitaysky AS; Williams CT
    J Exp Biol; 2019 Sep; 222(Pt 18):. PubMed ID: 31515236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of adipocyte stress response pathways during hibernation in thirteen-lined ground squirrels.
    Rouble AN; Tessier SN; Storey KB
    Mol Cell Biochem; 2014 Aug; 393(1-2):271-82. PubMed ID: 24777704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic cycles in a circannual hibernator.
    Epperson LE; Karimpour-Fard A; Hunter LE; Martin SL
    Physiol Genomics; 2011 Jul; 43(13):799-807. PubMed ID: 21540299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update.
    Vucetic M; Stancic A; Otasevic V; Jankovic A; Korac A; Markelic M; Velickovic K; Golic I; Buzadzic B; Storey KB; Korac B
    Free Radic Biol Med; 2013 Dec; 65():916-924. PubMed ID: 24013092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic circannual rhythm controls protein dynamics in a hibernator to support rapid heat production.
    Martin SL
    Temperature (Austin); 2014; 1(2):80-1. PubMed ID: 27581746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Platelet proteome dynamics in hibernating 13-lined ground squirrels.
    Cooper S; Wilmarth PA; Cunliffe JM; Klimek J; Pang J; Tassi Yunga S; Minnier J; Reddy A; David L; Aslan JE
    Physiol Genomics; 2021 Nov; 53(11):473-485. PubMed ID: 34677084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative assessment of ground squirrel mRNA levels in multiple stages of hibernation.
    Epperson LE; Martin SL
    Physiol Genomics; 2002 Aug; 10(2):93-102. PubMed ID: 12181366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turn down genes for WAT? Activation of anti-apoptosis pathways protects white adipose tissue in metabolically depressed thirteen-lined ground squirrels.
    Logan SM; Luu BE; Storey KB
    Mol Cell Biochem; 2016 May; 416(1-2):47-62. PubMed ID: 27032768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adrenal gene expression dynamics support hibernation in 13-lined ground squirrels.
    Gillen AE; Epperson LE; Orlicky DJ; Fu R; Martin SL
    Physiol Genomics; 2023 Apr; 55(4):155-167. PubMed ID: 36847440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal decrease in thermogenesis and increase in vasoconstriction explain seasonal response to N
    Frare C; Jenkins ME; McClure KM; Drew KL
    J Neurochem; 2019 Nov; 151(3):316-335. PubMed ID: 31273780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential expression of adipose- and heart-type fatty acid binding proteins in hibernating ground squirrels.
    Hittel D; Storey KB
    Biochim Biophys Acta; 2001 Dec; 1522(3):238-43. PubMed ID: 11779641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weather permitting: Increased seasonal efficiency of nonshivering thermogenesis through brown adipose tissue activation in the winter.
    Niclou A; Ocobock C
    Am J Hum Biol; 2022 Jun; 34(6):e23716. PubMed ID: 34942026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.