These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 24326574)

  • 1. Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries.
    Wang C; Chen H; Dong W; Ge J; Lu W; Wu X; Guo L; Chen L
    Chem Commun (Camb); 2014 Feb; 50(10):1202-4. PubMed ID: 24326574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of sulfur and multi-walled carbon nanotube composite synthesized by dissolution and precipitation for Li/S batteries.
    Park JS; Kim DJ; Park JW; Ryu HS; Kim KW; Wang GX; Ahn HJ
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5794-8. PubMed ID: 22966656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Synthesis of High-Surface-Area Sulfur-Carbon Composites for Li/S Batteries.
    Kaiser MR; Liang X; Konstantinov K; Liu HK; Dou SX; Wang JZ
    Chemistry; 2015 Jul; 21(28):10061-9. PubMed ID: 26012862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries.
    Xu GL; Xu YF; Fang JC; Peng XX; Fu F; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10782-93. PubMed ID: 24090340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.
    Zhao C; Liu L; Zhao H; Krall A; Wen Z; Chen J; Hurley P; Jiang J; Li Y
    Nanoscale; 2014 Jan; 6(2):882-8. PubMed ID: 24270510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries.
    Yu X; Manthiram A
    Chemistry; 2015 Mar; 21(11):4233-7. PubMed ID: 25640023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries.
    Wang D; Yu Y; Zhou W; Chen H; DiSalvo FJ; Muller DA; Abruña HD
    Phys Chem Chem Phys; 2013 Jun; 15(23):9051-7. PubMed ID: 23661229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries.
    Sun F; Wang J; Chen H; Li W; Qiao W; Long D; Ling L
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5630-8. PubMed ID: 23697650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries.
    Guo B; Ben T; Bi Z; Veith GM; Sun XG; Qiu S; Dai S
    Chem Commun (Camb); 2013 May; 49(43):4905-7. PubMed ID: 23604139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.
    Zhao MQ; Liu XF; Zhang Q; Tian GL; Huang JQ; Zhu W; Wei F
    ACS Nano; 2012 Dec; 6(12):10759-69. PubMed ID: 23153374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries.
    Shao J; Li X; Zhang L; Qu Q; Zheng H
    Nanoscale; 2013 Feb; 5(4):1460-4. PubMed ID: 23314835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries.
    Zhao MQ; Peng HJ; Tian GL; Zhang Q; Huang JQ; Cheng XB; Tang C; Wei F
    Adv Mater; 2014 Nov; 26(41):7051-8. PubMed ID: 25178738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple.
    Su YS; Fu Y; Guo B; Dai S; Manthiram A
    Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smaller sulfur molecules promise better lithium-sulfur batteries.
    Xin S; Gu L; Zhao NH; Yin YX; Zhou LJ; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Nov; 134(45):18510-3. PubMed ID: 23101502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.