BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24327259)

  • 1. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.
    Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E
    Planta; 2014 Mar; 239(3):667-77. PubMed ID: 24327259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
    Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ
    Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.).
    Serrano-Vega MJ; Garcés R; Martínez-Force E
    Planta; 2005 Aug; 221(6):868-80. PubMed ID: 15841386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.
    Martínez-Force E; Cantisán S; Serrano-Vega MJ; Garcés R
    Planta; 2000 Oct; 211(5):673-8. PubMed ID: 11089680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of fatty acid biosynthesis in sunflower seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous Expression of
    Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds.
    Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E
    Planta; 2012 Mar; 235(3):629-39. PubMed ID: 22002626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola.
    Hawkins DJ; Kridl JC
    Plant J; 1998 Mar; 13(6):743-52. PubMed ID: 9681015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.
    Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E
    Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering.
    Yuan L; Voelker TA; Hawkins DJ
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10639-43. PubMed ID: 7479856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases.
    Salas JJ; Ohlrogge JB
    Arch Biochem Biophys; 2002 Jul; 403(1):25-34. PubMed ID: 12061798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases.
    Kalinger RS; Williams D; Ahmadi Pirshahid A; Pulsifer IP; Rowland O
    Lipids; 2021 May; 56(3):327-344. PubMed ID: 33547664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights Into Sunflower (
    Aznar-Moreno JA; Sánchez R; Gidda SK; Martínez-Force E; Moreno-Pérez AJ; Venegas Calerón M; Garcés R; Mullen RT; Salas JJ
    Front Plant Sci; 2018; 9():1496. PubMed ID: 30459777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.
    Moreno-Pérez AJ; Sánchez-García A; Salas JJ; Garcés R; Martínez-Force E
    Plant Physiol Biochem; 2011 Jan; 49(1):82-7. PubMed ID: 21071236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases.
    Leonard JM; Knapp SJ; Slabaugh MB
    Plant J; 1998 Mar; 13(5):621-8. PubMed ID: 9681004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation.
    Sánchez-García A; Moreno-Pérez AJ; Muro-Pastor AM; Salas JJ; Garcés R; Martínez-Force E
    Phytochemistry; 2010 Jun; 71(8-9):860-9. PubMed ID: 20382402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins.
    Dörmann P; Voelker TA; Ohlrogge JB
    Arch Biochem Biophys; 1995 Jan; 316(1):612-8. PubMed ID: 7840673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.
    Jones A; Davies HM; Voelker TA
    Plant Cell; 1995 Mar; 7(3):359-71. PubMed ID: 7734968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.