BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24327381)

  • 1. Non-radial growth of helical homopolymer crystals: breaking the paradigm of the polymer spherulite microstructure.
    Rosenthal M; Hernandez JJ; Odarchenko YI; Soccio M; Lotti N; Di Cola E; Burghammer M; Ivanov DA
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1815-9. PubMed ID: 24327381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate).
    Gan Z; Kuwabara K; Abe H; Iwata T; Doi Y
    Biomacromolecules; 2004; 5(2):371-8. PubMed ID: 15002996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation study of twisted crystal growth in organic thin films.
    Fang A; Haataja M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042404. PubMed ID: 26565254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization of bifonazole and acetaminophen within the matrix of semicrystalline, PEO-PPO-PEO triblock copolymers.
    Chen Z; Liu Z; Qian F
    Mol Pharm; 2015 Feb; 12(2):590-9. PubMed ID: 25569586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Banded spherulitic structures of poly(ethylene adipate), poly(butylene succinate) and in their blends.
    Wang T; Wang H; Li H; Gan Z; Yan S
    Phys Chem Chem Phys; 2009 Mar; 11(10):1619-27. PubMed ID: 19240940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lamellar-twisting-induced circular dichroism of chromophore moieties in banded spherulites with evolution of homochirality.
    Li MC; Wang HF; Chiang CH; Lee YD; Ho RM
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4450-5. PubMed ID: 24644091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites.
    Shtukenberg AG; Cui X; Freudenthal J; Gunn E; Camp E; Kahr B
    J Am Chem Soc; 2012 Apr; 134(14):6354-64. PubMed ID: 22413815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization of Bulk Polymers With Chain Folding: Theory of Growth of Lamellar Spherulites.
    Hoffman JD; Lauritzen JI
    J Res Natl Bur Stand A Phys Chem; 1961; 65A(4):297-336. PubMed ID: 32196181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals.
    Li XY; Ding JJ; Liu YP; Tian XY
    IUCrJ; 2019 Sep; 6(Pt 5):968-983. PubMed ID: 31576229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual types of spherulites in poly(octamethylene terephthalate) confined in thin-film growth.
    Chen YF; Woo EM; Li SH
    Langmuir; 2008 Oct; 24(20):11880-8. PubMed ID: 18823080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations.
    Sun CY; Gránásy L; Stifler CA; Zaquin T; Chopdekar RV; Tamura N; Weaver JC; Zhang JAY; Goffredo S; Falini G; Marcus MA; Pusztai T; Schoeppler V; Mass T; Gilbert PUPA
    Acta Biomater; 2021 Jan; 120():277-292. PubMed ID: 32590171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of crystallization temperature of poly(vinylidene fluoride) on crystal modification and phase transition of poly(butylene adipate) in their blends: a novel approach for polymorphic control.
    Yang J; Pan P; Hua L; Feng X; Yue J; Ge Y; Inoue Y
    J Phys Chem B; 2012 Feb; 116(4):1265-72. PubMed ID: 22225417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Temperature Stability of High Energy Density Ferroelectric Polymer Blends: The Spatial Confinement Effect.
    Liu Y; Gao J; Wang Y; Zhou J; Cao L; He Z; Zhang Y; Tang C; Zhong L
    Macromol Rapid Commun; 2019 Nov; 40(21):e1900406. PubMed ID: 31557369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cocrystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate).
    Cranston E; Kawada J; Raymond S; Morin FG; Marchessault RH
    Biomacromolecules; 2003; 4(4):995-9. PubMed ID: 12857084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic degradation processes of lamellar crystals in thin films for poly[(R)-3-hydroxybutyric acid] and its copolymers revealed by real-time atomic force microscopy.
    Numata K; Hirota T; Kikkawa Y; Tsuge T; Iwata T; Abe H; Doi Y
    Biomacromolecules; 2004; 5(6):2186-94. PubMed ID: 15530032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural study of poly(L-lactic acid) spherulites.
    Gazzano M; Focarete ML; Riekel C; Scandola M
    Biomacromolecules; 2004; 5(2):553-8. PubMed ID: 15003020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate).
    Woo EM; Nurkhamidah S; Chen YF
    Phys Chem Chem Phys; 2011 Oct; 13(39):17841-51. PubMed ID: 21909562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Spherulitic Crystallization of Isotactic Polypropylene From Solution: On the Evolution of Monoclinic Spherulites From Dendritic Chain-Folded Crystal Precursors.
    Khoury F
    J Res Natl Bur Stand A Phys Chem; 1966; 70A(1):29-61. PubMed ID: 31823979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of comonomer content on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
    Cai H; Qiu Z
    Phys Chem Chem Phys; 2009 Nov; 11(41):9569-77. PubMed ID: 19830343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature's Three-Dimensional Printing.
    Sun CY; Marcus MA; Frazier MJ; Giuffre AJ; Mass T; Gilbert PUPA
    ACS Nano; 2017 Jul; 11(7):6612-6622. PubMed ID: 28564539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.