These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24327400)

  • 1. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.
    Bandura AV; Evarestov RA
    J Comput Chem; 2014 Feb; 35(5):395-405. PubMed ID: 24327400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.
    Bandura AV; Evarestov RA; Lukyanov SI
    Phys Chem Chem Phys; 2014 Jul; 16(28):14781-91. PubMed ID: 24922363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BaTiO3-based nanolayers and nanotubes: first-principles calculations.
    Evarestov RA; Bandura AV; Kuruch DD
    J Comput Chem; 2013 Jan; 34(3):175-86. PubMed ID: 22996194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles modeling of hafnia-based nanotubes.
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Sep; 38(24):2088-2099. PubMed ID: 28618024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles calculations of AlN nanowires and nanotubes: atomic structures, energetics, and surface states.
    Zhao M; Xia Y; Liu X; Tan Z; Huang B; Song C; Mei L
    J Phys Chem B; 2006 May; 110(17):8764-8. PubMed ID: 16640433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy minimization of single-walled titanium oxide nanotubes.
    Hart JN; Parker SC; Lapkin AA
    ACS Nano; 2009 Nov; 3(11):3401-12. PubMed ID: 19845336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of zone-folding approach to the first-principles estimation of thermodynamic properties of carbon and ZrS2 -based nanotubes.
    Bandura AV; Porsev VV; Evarestov RA
    J Comput Chem; 2016 Mar; 37(7):641-52. PubMed ID: 26519863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-layered chrysotile nanotubes: A quantum mechanical ab initio simulation.
    D'Arco P; Noel Y; Demichelis R; Dovesi R
    J Chem Phys; 2009 Nov; 131(20):204701. PubMed ID: 19947698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First principles study of hydrated/hydroxylated TiO2 nanolayers: from isolated sheets to stacks and tubes.
    Casarin M; Vittadini A; Selloni A
    ACS Nano; 2009 Feb; 3(2):317-24. PubMed ID: 19236066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
    Porsev VV; Bandura AV; Evarestov RA
    Chemphyschem; 2015 Oct; 16(14):3007-14. PubMed ID: 26271922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls.
    Seo K; Park KA; Kim C; Han S; Kim B; Lee YH
    J Am Chem Soc; 2005 Nov; 127(45):15724-9. PubMed ID: 16277513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes.
    Wilson M
    J Chem Phys; 2006 Mar; 124(12):124706. PubMed ID: 16599717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab initio calculations.
    Zhang RQ; Lee HL; Li WK; Teo BK
    J Phys Chem B; 2005 May; 109(18):8605-12. PubMed ID: 16852018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO3 Nanotubes.
    Bandura AV; Kuruch DD; Evarestov RA
    Chemphyschem; 2015 Jul; 16(10):2192-8. PubMed ID: 26010751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation effects in morphology and electronic properties of anatase TiO(2) one-dimensional nanostructures. II. Nanotubes.
    Migas DB; Filonov AB; Borisenko VE; Skorodumova NV
    Phys Chem Chem Phys; 2014 May; 16(20):9490-8. PubMed ID: 24724154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.