These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 24327556)
1. Award Winner in the Young Investigator Category, 2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014: Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. Caliari SR; Mozdzen LC; Armitage O; Oyen ML; Harley BA J Biomed Mater Res A; 2014 Apr; 102(4):917-27. PubMed ID: 24327556 [TBL] [Abstract][Full Text] [Related]
2. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Caliari SR; Ramirez MA; Harley BA Biomaterials; 2011 Dec; 32(34):8990-8. PubMed ID: 21880362 [TBL] [Abstract][Full Text] [Related]
3. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Mozdzen LC; Rodgers R; Banks JM; Bailey RC; Harley BA Acta Biomater; 2016 Mar; 33():25-33. PubMed ID: 26850145 [TBL] [Abstract][Full Text] [Related]
4. The influence of collagen-glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability. Caliari SR; Weisgerber DW; Ramirez MA; Kelkhoff DO; Harley BA J Mech Behav Biomed Mater; 2012 Jul; 11():27-40. PubMed ID: 22658152 [TBL] [Abstract][Full Text] [Related]
5. The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Caliari SR; Harley BA Biomaterials; 2011 Aug; 32(23):5330-40. PubMed ID: 21550653 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181 [TBL] [Abstract][Full Text] [Related]
7. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Murphy CM; Duffy GP; Schindeler A; O'brien FJ J Biomed Mater Res A; 2016 Jan; 104(1):291-304. PubMed ID: 26386362 [TBL] [Abstract][Full Text] [Related]
8. Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold. Keogh MB; O'Brien FJ; Daly JS Acta Biomater; 2010 Nov; 6(11):4305-13. PubMed ID: 20570642 [TBL] [Abstract][Full Text] [Related]
9. The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Hortensius RA; Harley BA Biomaterials; 2013 Oct; 34(31):7645-52. PubMed ID: 23871542 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical, Biochemical, and Cell Biological Evaluation of Different Collagen Scaffolds for Tendon Augmentation. Gabler C; Spohn J; Tischer T; Bader R Biomed Res Int; 2018; 2018():7246716. PubMed ID: 29854782 [TBL] [Abstract][Full Text] [Related]
12. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
14. Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Caliari SR; Harley BA Tissue Eng Part A; 2013 May; 19(9-10):1100-12. PubMed ID: 23157454 [TBL] [Abstract][Full Text] [Related]
15. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676 [TBL] [Abstract][Full Text] [Related]
16. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction. Brougham CM; Levingstone TJ; Jockenhoevel S; Flanagan TC; O'Brien FJ Acta Biomater; 2015 Oct; 26():205-14. PubMed ID: 26297884 [TBL] [Abstract][Full Text] [Related]
18. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117 [TBL] [Abstract][Full Text] [Related]
19. Assessment of biological properties of recombinant collagen-hyaluronic acid composite scaffolds. He Y; Hou Z; Wang J; Wang Z; Li X; Liu J; XiaolinYang ; Liang Q; Zhao J Int J Biol Macromol; 2020 Apr; 149():1275-1284. PubMed ID: 32035148 [TBL] [Abstract][Full Text] [Related]
20. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering. Zou F; Li R; Jiang J; Mo X; Gu G; Guo Z; Chen Z J Biomater Sci Polym Ed; 2017 Dec; 28(18):2255-2270. PubMed ID: 29034774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]