These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24328131)

  • 1. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.
    Crook NC; Schmitz AC; Alper HS
    ACS Synth Biol; 2014 May; 3(5):307-13. PubMed ID: 24328131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.
    Blazeck J; Miller J; Pan A; Gengler J; Holden C; Jamoussi M; Alper HS
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8155-64. PubMed ID: 24997118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae.
    Williams TC; Espinosa MI; Nielsen LK; Vickers CE
    Microb Cell Fact; 2015 Apr; 14():43. PubMed ID: 25886317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.
    Si T; Zhao H
    Methods Mol Biol; 2016; 1470():183-98. PubMed ID: 27581294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter engineering: recent advances in controlling transcription at the most fundamental level.
    Blazeck J; Alper HS
    Biotechnol J; 2013 Jan; 8(1):46-58. PubMed ID: 22890821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.
    Young EM; Zhao Z; Gielesen BEM; Wu L; Benjamin Gordon D; Roubos JA; Voigt CA
    Metab Eng; 2018 Jul; 48():33-43. PubMed ID: 29753070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Repeat-Structured siRNA Precursors as Tunable Regulators for Saccharomyces cerevisiae.
    Purcell O; Cao J; Müller IE; Chen YC; Lu TK
    ACS Synth Biol; 2018 Oct; 7(10):2403-2412. PubMed ID: 30176724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae.
    Kildegaard KR; Tramontin LRR; Chekina K; Li M; Goedecke TJ; Kristensen M; Borodina I
    Yeast; 2019 May; 36(5):237-247. PubMed ID: 30953378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Evolution of Metabolic Productivity Using Biosensors.
    Williams TC; Pretorius IS; Paulsen IT
    Trends Biotechnol; 2016 May; 34(5):371-381. PubMed ID: 26948437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.
    Ishii J; Kondo T; Makino H; Ogura A; Matsuda F; Kondo A
    FEMS Yeast Res; 2014 May; 14(3):399-411. PubMed ID: 24447461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.
    Lee JJ; Crook N; Sun J; Alper HS
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):87-96. PubMed ID: 26660479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systems-level approach for metabolic engineering of yeast cell factories.
    Kim IK; Roldão A; Siewers V; Nielsen J
    FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.
    Yuan Y; Du J; Zhao H
    Methods Mol Biol; 2013; 985():177-209. PubMed ID: 23417805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.
    Da Silva NA; Srikrishnan S
    FEMS Yeast Res; 2012 Mar; 12(2):197-214. PubMed ID: 22129153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling technologies to advance microbial isoprenoid production.
    Chen Y; Zhou YJ; Siewers V; Nielsen J
    Adv Biochem Eng Biotechnol; 2015; 148():143-60. PubMed ID: 25549781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of microbial cell factories for bio-refinery through synthetic bioengineering.
    Kondo A; Ishii J; Hara KY; Hasunuma T; Matsuda F
    J Biotechnol; 2013 Jan; 163(2):204-16. PubMed ID: 22728424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.