These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24328136)

  • 1. Identification of a selective polymerase enables detection of N(6)-methyladenosine in RNA.
    Harcourt EM; Ehrenschwender T; Batista PJ; Chang HY; Kool ET
    J Am Chem Soc; 2013 Dec; 135(51):19079-82. PubMed ID: 24328136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of a DNA Polymerase for Direct m
    Aschenbrenner J; Werner S; Marchand V; Adam M; Motorin Y; Helm M; Marx A
    Angew Chem Int Ed Engl; 2018 Jan; 57(2):417-421. PubMed ID: 29115744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deoxyribozyme-based method for absolute quantification of
    Bujnowska M; Zhang J; Dai Q; Heideman EM; Fei J
    J Biol Chem; 2020 May; 295(20):6992-7000. PubMed ID: 32269077
    [No Abstract]   [Full Text] [Related]  

  • 4. RNA template-dependent 5' nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases.
    Ma WP; Kaiser MW; Lyamicheva N; Schaefer JJ; Allawi HT; Takova T; Neri BP; Lyamichev VI
    J Biol Chem; 2000 Aug; 275(32):24693-700. PubMed ID: 10827184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics.
    Choi J; Ieong KW; Demirci H; Chen J; Petrov A; Prabhakar A; O'Leary SE; Dominissini D; Rechavi G; Soltis SM; Ehrenberg M; Puglisi JD
    Nat Struct Mol Biol; 2016 Feb; 23(2):110-5. PubMed ID: 26751643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Recombinant Thermus thermophilus His6-DNA polymerase with reverse transcriptase activity].
    Smirnov IuV; Chakhmakhcehva OG; Efimov VA
    Bioorg Khim; 1997 Apr; 23(4):257-61. PubMed ID: 9221727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA.
    Liu N; Parisien M; Dai Q; Zheng G; He C; Pan T
    RNA; 2013 Dec; 19(12):1848-56. PubMed ID: 24141618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Elongation- and Ligation-Based qPCR Amplification Method for the Radiolabeling-Free Detection of Locus-Specific N
    Xiao Y; Wang Y; Tang Q; Wei L; Zhang X; Jia G
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):15995-16000. PubMed ID: 30345651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N
    Sednev MV; Mykhailiuk V; Choudhury P; Halang J; Sloan KE; Bohnsack MT; Höbartner C
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15117-15121. PubMed ID: 30276938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Use of thermostable DNA polymerase from Thermus thermophilus KTP in a combined reverse transcription and amplification reaction for detecting CD4 receptor mRNA].
    Glukhov AI; Grebennikova TV; Kiselev VI; Severin ES
    Mol Biol (Mosk); 1995; 29(4):942-9. PubMed ID: 7476959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-free enzyme-assisted chemical approach for detection of N
    Wang Y; Xiao Y; Dong S; Yu Q; Jia G
    Nat Chem Biol; 2020 Aug; 16(8):896-903. PubMed ID: 32341502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing RNA Modification Status at Single-Nucleotide Resolution in Total RNA.
    Liu N; Pan T
    Methods Enzymol; 2015; 560():149-59. PubMed ID: 26253970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N
    Xiong X; Li X; Yi C
    Curr Opin Chem Biol; 2018 Aug; 45():179-186. PubMed ID: 30007213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA.
    Pinto R; Vågbø CB; Jakobsson ME; Kim Y; Baltissen MP; O'Donohue MF; Guzmán UH; Małecki JM; Wu J; Kirpekar F; Olsen JV; Gleizes PE; Vermeulen M; Leidel SA; Slupphaug G; Falnes PØ
    Nucleic Acids Res; 2020 Jan; 48(2):830-846. PubMed ID: 31799605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the 5'-->3' exonuclease/ribonuclease H activity of Thermus thermophilus DNA polymerase.
    Auer T; Landre PA; Myers TW
    Biochemistry; 1995 Apr; 34(15):4994-5002. PubMed ID: 7711021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible RNA adenosine methylation in biological regulation.
    Jia G; Fu Y; He C
    Trends Genet; 2013 Feb; 29(2):108-15. PubMed ID: 23218460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase.
    Myers TW; Gelfand DH
    Biochemistry; 1991 Aug; 30(31):7661-6. PubMed ID: 1714296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide N⁶-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification.
    Li Y; Wang X; Li C; Hu S; Yu J; Song S
    RNA Biol; 2014; 11(9):1180-8. PubMed ID: 25483034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N6-methyladenosine-dependent regulation of messenger RNA stability.
    Wang X; Lu Z; Gomez A; Hon GC; Yue Y; Han D; Fu Y; Parisien M; Dai Q; Jia G; Ren B; Pan T; He C
    Nature; 2014 Jan; 505(7481):117-20. PubMed ID: 24284625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective affinity labeling of DNA-polymerase from Thermus thermophilus B35 by a binary system of photoreactive agents.
    Rechkunova NI; Kolpashchikov DM; Lebedeva NA; Petruseva IO; Dobrikov MI; Degtyarev SK; Lavrik OI
    Biochemistry (Mosc); 2000 Feb; 65(2):244-9. PubMed ID: 10713555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.