These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24328141)

  • 21. The shift in urea orientation at protein surfaces at low pH is compatible with a direct mechanism of protein denaturation.
    de Oliveira IP; Martínez L
    Phys Chem Chem Phys; 2019 Dec; 22(1):354-367. PubMed ID: 31815262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the denaturation of human alpha-lactalbumin in urea by molecular dynamics simulations.
    Smith LJ; Jones RM; van Gunsteren WF
    Proteins; 2005 Feb; 58(2):439-49. PubMed ID: 15558602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Backbone and side-chain contributions in protein denaturation by urea.
    Canchi DR; García AE
    Biophys J; 2011 Mar; 100(6):1526-33. PubMed ID: 21402035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dominant interaction between peptide and urea is electrostatic in nature: a molecular dynamics simulation study.
    Tobi D; Elber R; Thirumalai D
    Biopolymers; 2003 Mar; 68(3):359-69. PubMed ID: 12601795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations.
    Horinek D; Netz RR
    J Phys Chem A; 2011 Jun; 115(23):6125-36. PubMed ID: 21361327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Salt Interactions in Solution Prevent Direct Association of Urea with a Peptide Backbone.
    Steinke N; Genina A; Lorenz CD; McLain SE
    J Phys Chem B; 2017 Mar; 121(8):1866-1876. PubMed ID: 28134523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Side-chain chi(1) conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings.
    Vajpai N; Gentner M; Huang JR; Blackledge M; Grzesiek S
    J Am Chem Soc; 2010 Mar; 132(9):3196-203. PubMed ID: 20155903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis for the effect of urea and guanidinium chloride on the dynamics of unfolded polypeptide chains.
    Möglich A; Krieger F; Kiefhaber T
    J Mol Biol; 2005 Jan; 345(1):153-62. PubMed ID: 15567418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study of urea-dependent denaturation of beta-lactoglobulin by principal component analysis and two-dimensional correlation spectroscopy.
    Czarnik-Matusewicz B; Kim SB; Jung YM
    J Phys Chem B; 2009 Jan; 113(2):559-66. PubMed ID: 19093837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomistic mechanism of protein denaturation by urea.
    Das A; Mukhopadhyay C
    J Phys Chem B; 2008 Jul; 112(26):7903-8. PubMed ID: 18543983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and effect of sarcosine on water and urea by using molecular dynamics simulations: Implications in protein stabilization.
    Kumar N; Kishore N
    Biophys Chem; 2013 Jan; 171():9-15. PubMed ID: 23266436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution.
    Mountain RD; Thirumalai D
    J Am Chem Soc; 2003 Feb; 125(7):1950-7. PubMed ID: 12580622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic behavior of glycine betaine-urea mixture: a molecular dynamics study.
    Kumar N; Kishore N
    J Chem Phys; 2013 Sep; 139(11):115104. PubMed ID: 24070312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urea interactions with protein groups: a volumetric study.
    Lee S; Shek YL; Chalikian TV
    Biopolymers; 2010 Oct; 93(10):866-79. PubMed ID: 20564051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.
    Nayar D; Folberth A; van der Vegt NFA
    Phys Chem Chem Phys; 2017 Jul; 19(28):18156-18161. PubMed ID: 28692101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings.
    Nodet G; Salmon L; Ozenne V; Meier S; Jensen MR; Blackledge M
    J Am Chem Soc; 2009 Dec; 131(49):17908-18. PubMed ID: 19908838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale investigation of chemical interference in proteins.
    Samiotakis A; Homouz D; Cheung MS
    J Chem Phys; 2010 May; 132(17):175101. PubMed ID: 20459186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent denaturation of proteins and interpretations of the m value.
    Scholtz JM; Grimsley GR; Pace CN
    Methods Enzymol; 2009; 466():549-65. PubMed ID: 21609876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combined molecular dynamic simulation and urea 14N NMR relaxation study of the urea-lysozyme system.
    Lindgren M; Sparrman T; Westlund PO
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):953-9. PubMed ID: 20061179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.