These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24328169)

  • 21. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.
    Niu DD; Liu HX; Jiang CH; Wang YP; Wang QY; Jin HL; Guo JH
    Mol Plant Microbe Interact; 2011 May; 24(5):533-42. PubMed ID: 21198361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.
    de Torres Zabala M; Bennett MH; Truman WH; Grant MR
    Plant J; 2009 Aug; 59(3):375-86. PubMed ID: 19392690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition.
    García-Andrade J; Ramírez V; Flors V; Vera P
    Plant J; 2011 Sep; 67(5):783-94. PubMed ID: 21564353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose.
    Ton J; Mauch-Mani B
    Plant J; 2004 Apr; 38(1):119-30. PubMed ID: 15053765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. beta-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling.
    Hamiduzzaman MM; Jakab G; Barnavon L; Neuhaus JM; Mauch-Mani B
    Mol Plant Microbe Interact; 2005 Aug; 18(8):819-29. PubMed ID: 16134894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genetic and molecular basis of plant resistance to pathogens.
    Zhang Y; Lubberstedt T; Xu M
    J Genet Genomics; 2013 Jan; 40(1):23-35. PubMed ID: 23357342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Priming in systemic plant immunity.
    Jung HW; Tschaplinski TJ; Wang L; Glazebrook J; Greenberg JT
    Science; 2009 Apr; 324(5923):89-91. PubMed ID: 19342588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis.
    Zhang X; Mou Z
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1209-18. PubMed ID: 22670756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox control of systemic acquired resistance.
    Fobert PR; Després C
    Curr Opin Plant Biol; 2005 Aug; 8(4):378-82. PubMed ID: 15922650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid.
    Chaturvedi R; Krothapalli K; Makandar R; Nandi A; Sparks AA; Roth MR; Welti R; Shah J
    Plant J; 2008 Apr; 54(1):106-17. PubMed ID: 18088304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unraveling mycorrhiza-induced resistance.
    Pozo MJ; Azcón-Aguilar C
    Curr Opin Plant Biol; 2007 Aug; 10(4):393-8. PubMed ID: 17658291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling crop diseases using induced resistance: challenges for the future.
    Walters DR; Ratsep J; Havis ND
    J Exp Bot; 2013 Mar; 64(5):1263-80. PubMed ID: 23386685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato.
    Manosalva PM; Park SW; Forouhar F; Tong L; Fry WE; Klessig DF
    Mol Plant Microbe Interact; 2010 Sep; 23(9):1151-63. PubMed ID: 20687805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobile signals in systemic acquired resistance.
    Kachroo A; Kachroo P
    Curr Opin Plant Biol; 2020 Dec; 58():41-47. PubMed ID: 33202317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathological hormone imbalances.
    Robert-Seilaniantz A; Navarro L; Bari R; Jones JD
    Curr Opin Plant Biol; 2007 Aug; 10(4):372-9. PubMed ID: 17646123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is modulating virus virulence by induced systemic resistance realistic?
    Faoro F; Gozzo F
    Plant Sci; 2015 May; 234():1-13. PubMed ID: 25804804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-distance signalling in plant defence.
    Heil M; Ton J
    Trends Plant Sci; 2008 Jun; 13(6):264-72. PubMed ID: 18487073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae.
    Ellis C; Karafyllidis I; Turner JG
    Mol Plant Microbe Interact; 2002 Oct; 15(10):1025-30. PubMed ID: 12437300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.
    Roatti B; Perazzolli M; Gessler C; Pertot I
    Phytopathology; 2013 Dec; 103(12):1227-34. PubMed ID: 23841621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.