These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24328198)

  • 1. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.
    Zhang Y; Zhu P; Li G; Zhao T; Fu X; Sun R; Zhou F; Wong CP
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):560-7. PubMed ID: 24328198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.
    Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y
    Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.
    Shin DH; Woo S; Yem H; Cha M; Cho S; Kang M; Jeong S; Kim Y; Kang K; Piao Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3312-9. PubMed ID: 24512011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics.
    Lee Y; Choi JR; Lee KJ; Stott NE; Kim D
    Nanotechnology; 2008 Oct; 19(41):415604. PubMed ID: 21832649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells.
    Kim C; Lee G; Rhee C; Lee M
    Nanoscale; 2015 Apr; 7(15):6627-35. PubMed ID: 25794325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroless copper plating of inkjet-printed polydopamine nanoparticles: a facile method to fabricate highly conductive patterns at near room temperature.
    Ma S; Liu L; Bromberg V; Singler TJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19494-8. PubMed ID: 25360833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.
    Tai YL; Yang ZG
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17104-11. PubMed ID: 26133543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films.
    Dharmadasa R; Jha M; Amos DA; Druffel T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink.
    Jo YH; Jung I; Choi CS; Kim I; Lee HM
    Nanotechnology; 2011 Jun; 22(22):225701. PubMed ID: 21454937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive films prepared from inks based on copper nanoparticles synthesized by transferred arc discharge.
    Fu Q; Stein M; Li W; Zheng J; Kruis FE
    Nanotechnology; 2020 Jan; 31(2):025302. PubMed ID: 31530758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.