These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24328222)

  • 1. Detection, counting, and imaging of single nanoparticles.
    Wang W; Tao N
    Anal Chem; 2014 Jan; 86(1):2-14. PubMed ID: 24328222
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer.
    Liu GL; Long YT; Choi Y; Kang T; Lee LP
    Nat Methods; 2007 Dec; 4(12):1015-7. PubMed ID: 18026109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of Cefixime.
    Masoudyfar Z; Elhami S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():234-238. PubMed ID: 30553146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric detection of acetylcholine with plasmonic nanomaterials signaling.
    Oh JH; Kim BC; Lee JS
    Anal Bioanal Chem; 2014 Nov; 406(29):7591-600. PubMed ID: 25258290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles.
    Nezhad MR; Alimohammadi M; Tashkhourian J; Razavian SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):199-203. PubMed ID: 18222104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy.
    Lai Y; Pan W; Zhang D; Zhan J
    Nanoscale; 2011 May; 3(5):2134-7. PubMed ID: 21451843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digitizing Gold Nanoparticle-Based Colorimetric Assay by Imaging and Counting Single Nanoparticles.
    Yuan L; Wang X; Fang Y; Liu C; Jiang D; Wo X; Wang W; Chen HY
    Anal Chem; 2016 Feb; 88(4):2321-6. PubMed ID: 26758648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Single Polymeric and Protein Nanoparticles with Surface Plasmon Resonance Imaging Measurements.
    Maley AM; Lu GJ; Shapiro MG; Corn RM
    ACS Nano; 2017 Jul; 11(7):7447-7456. PubMed ID: 28692253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well.
    Tong L; Miljković VD; Johansson P; Käll M
    Nano Lett; 2011 Nov; 11(11):4505-8. PubMed ID: 21142200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.
    Zhu S; Chen TP; Cen ZH; Goh ES; Yu SF; Liu YC; Liu Y
    Opt Express; 2010 Oct; 18(21):21926-31. PubMed ID: 20941092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells.
    Seo JT; Yang Q; Kim WJ; Heo J; Ma SM; Austin J; Yun WS; Jung SS; Han SW; Tabibi B; Temple D
    Opt Lett; 2009 Feb; 34(3):307-9. PubMed ID: 19183640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNAzyme-functionalized gold nanoparticles for biosensing.
    Xiang Y; Wu P; Tan LH; Lu Y
    Adv Biochem Eng Biotechnol; 2014; 140():93-120. PubMed ID: 24026635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical detection systems using immobilized aptamers.
    Sassolas A; Blum LJ; Leca-Bouvier BD
    Biosens Bioelectron; 2011 May; 26(9):3725-36. PubMed ID: 21419619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance.
    Huang W; Qian W; El-Sayed MA
    J Am Chem Soc; 2006 Oct; 128(41):13330-1. PubMed ID: 17031925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films.
    Yang KY; Choi KC; Kang IS; Won Ahn C
    Opt Express; 2010 Aug; 18(16):16379-86. PubMed ID: 20721025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits of the Effective Medium Theory in Particle Amplified Surface Plasmon Resonance Spectroscopy Biosensors.
    Costa JS; Zaman Q; Q da Costa K; Dmitriev V; Pandoli O; Fontes G; Del Rosso T
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline.
    He Y; Peng R
    Nanotechnology; 2014 Nov; 25(45):455502. PubMed ID: 25327146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance.
    Wang S; Shan X; Patel U; Huang X; Lu J; Li J; Tao N
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16028-32. PubMed ID: 20798340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.