These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24328414)

  • 1. Isolation and amplification of mRNA within a simple microfluidic lab on a chip.
    Reinholt SJ; Behrent A; Greene C; Kalfe A; Baeumner AJ
    Anal Chem; 2014 Jan; 86(1):849-56. PubMed ID: 24328414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip.
    Esch MB; Locascio LE; Tarlov MJ; Durst RA
    Anal Chem; 2001 Jul; 73(13):2952-8. PubMed ID: 11467540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection.
    Nugen SR; Asiello PJ; Connelly JT; Baeumner AJ
    Biosens Bioelectron; 2009 Apr; 24(8):2428-33. PubMed ID: 19168346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of viable oocysts of Cryptosporidium parvum following nucleic acid sequence based amplification.
    Baeumner AJ; Humiston MC; Montagna RA; Durst RA
    Anal Chem; 2001 Mar; 73(6):1176-80. PubMed ID: 11305648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of Cryptosporidium parvum hsp70 mRNA amplification as a tool to discriminate between viable and dead oocysts.
    Gobet P; Toze S
    J Parasitol; 2001 Feb; 87(1):226-9. PubMed ID: 11227898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated sample-to-detection chip for nucleic acid test assays.
    Prakash R; Pabbaraju K; Wong S; Tellier R; Kaler KV
    Biomed Microdevices; 2016 Jun; 18(3):44. PubMed ID: 27165104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of two methods for quantification of hsp70 mRNA from the waterborne pathogen Cryptosporidium parvum by reverse transcription real-time PCR in environmental samples.
    Garcés-Sanchez G; Wilderer PA; Munch JC; Horn H; Lebuhn M
    Water Res; 2009 Jun; 43(10):2669-78. PubMed ID: 19401258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA.
    Javier DJ; Castellanos-Gonzalez A; Weigum SE; White AC; Richards-Kortum R
    J Clin Microbiol; 2009 Dec; 47(12):4060-6. PubMed ID: 19828740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the viability of Cryptosporidium parvum oocysts with the induction ratio of hsp70 mRNA production in manure.
    Garcés-Sanchez G; Wilderer PA; Horn H; Munch JC; Lebuhn M
    J Microbiol Methods; 2013 Sep; 94(3):280-9. PubMed ID: 23747597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel PMMA microfluidic biosensor with integrated IDUAs for electrochemical detection.
    Wongkaew N; He P; Kurth V; Surareungchai W; Baeumner AJ
    Anal Bioanal Chem; 2013 Jul; 405(18):5965-74. PubMed ID: 23681202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
    Mumtaz Z; Rashid Z; Ali A; Arif A; Ameen F; AlTami MS; Yousaf MZ
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T7-based linear amplification of low concentration mRNA samples using beads and microfluidics for global gene expression measurements.
    Kralj JG; Player A; Sedrick H; Munson MS; Petersen D; Forry SP; Meltzer P; Kawasaki E; Locascio LE
    Lab Chip; 2009 Apr; 9(7):917-24. PubMed ID: 19294302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic platform for transcription- and amplification-free detection of zepto-mole amounts of nucleic acid molecules.
    Mayr R; Haider M; Thünauer R; Haselgrübler T; Schütz GJ; Sonnleitner A; Hesse J
    Biosens Bioelectron; 2016 Apr; 78():1-6. PubMed ID: 26580983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA.
    Aguilar ZP; Fritsch I
    Anal Chem; 2003 Aug; 75(15):3890-7. PubMed ID: 14572058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR.
    Stinear T; Matusan A; Hines K; Sandery M
    Appl Environ Microbiol; 1996 Sep; 62(9):3385-90. PubMed ID: 8795230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum.
    Hallier-Soulier S; Guillot E
    Environ Microbiol; 2003 Jul; 5(7):592-8. PubMed ID: 12823191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SlipChip Device for Digital Nucleic Acid Amplification.
    Shen F
    Methods Mol Biol; 2017; 1547():123-132. PubMed ID: 28044292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive detection of gene expression of an intronless gene: amplification of mRNA, but not genomic DNA by nucleic acid sequence based amplification (NASBA).
    Heim A; Grumbach IM; Zeuke S; Top B
    Nucleic Acids Res; 1998 May; 26(9):2250-1. PubMed ID: 9547289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic Bacteria Detection Using RNA-Based Loop-Mediated Isothermal-Amplification-Assisted Nucleic Acid Amplification via Droplet Microfluidics.
    Azizi M; Zaferani M; Cheong SH; Abbaspourrad A
    ACS Sens; 2019 Apr; 4(4):841-848. PubMed ID: 30908029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.