These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
604 related articles for article (PubMed ID: 24328984)
1. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system. Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984 [TBL] [Abstract][Full Text] [Related]
2. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery. Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908 [TBL] [Abstract][Full Text] [Related]
3. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization. Talasaz A; Patel RV IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305 [TBL] [Abstract][Full Text] [Related]
4. Force-feedback grasper helps restore sense of touch in minimally invasive surgery. MacFarlane M; Rosen J; Hannaford B; Pellegrini C; Sinanan M J Gastrointest Surg; 1999; 3(3):278-85. PubMed ID: 10481120 [TBL] [Abstract][Full Text] [Related]
5. Artificial palpation in robotic surgery using haptic feedback. Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198 [TBL] [Abstract][Full Text] [Related]
6. Methods and mechanisms for contact feedback in a robot-assisted minimally invasive environment. Tavakoli M; Aziminejad A; Patel RV; Moallem M Surg Endosc; 2006 Oct; 20(10):1570-9. PubMed ID: 16897288 [TBL] [Abstract][Full Text] [Related]
7. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342 [TBL] [Abstract][Full Text] [Related]
8. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study. Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002 [TBL] [Abstract][Full Text] [Related]
9. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. He C; Wang S; Sang H; Li J; Zhang L Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887 [TBL] [Abstract][Full Text] [Related]
10. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery. Yu H; Jiang J; Xie L; Liu L; Shi Y; Cai P Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):136-43. PubMed ID: 24345276 [TBL] [Abstract][Full Text] [Related]
11. Introduction to haptics for neurosurgeons. L'Orsa R; Macnab CJ; Tavakoli M Neurosurgery; 2013 Jan; 72 Suppl 1():139-53. PubMed ID: 23254803 [TBL] [Abstract][Full Text] [Related]
12. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model. Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132 [TBL] [Abstract][Full Text] [Related]
13. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Tavakoli M; Patel RV; Moallem M Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379 [TBL] [Abstract][Full Text] [Related]
14. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training. Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331 [TBL] [Abstract][Full Text] [Related]
15. [A New Micro-traumatic Laparoscopic Surgery Robot System]. Su M; Wang J; Li Z; Luo Z; Yuan S; Chen G; Liao Z; He C Zhongguo Yi Liao Qi Xie Za Zhi; 2019 May; 43(3):165-169. PubMed ID: 31184070 [TBL] [Abstract][Full Text] [Related]
16. Force feedback plays a significant role in minimally invasive surgery: results and analysis. Tholey G; Desai JP; Castellanos AE Ann Surg; 2005 Jan; 241(1):102-9. PubMed ID: 15621997 [TBL] [Abstract][Full Text] [Related]
17. The Role of Direct and Visual Force Feedback in Suturing Using a 7-DOF Dual-Arm Teleoperated System. Talasaz A; Trejos AL; Patel RV IEEE Trans Haptics; 2017; 10(2):276-287. PubMed ID: 28113408 [TBL] [Abstract][Full Text] [Related]
18. Force-Sensorless Identification and Classification of Tissue Biomechanical Parameters for Robot-Assisted Palpation. Gutierrez-Giles A; Padilla-CastaƱeda MA; Alvarez-Icaza L; Gutierrez-Herrera E Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433266 [TBL] [Abstract][Full Text] [Related]
19. Reviewing the technological challenges associated with the development of a laparoscopic palpation device. Culmer P; Barrie J; Hewson R; Levesley M; Mon-Williams M; Jayne D; Neville A Int J Med Robot; 2012 Jun; 8(2):146-59. PubMed ID: 22351567 [TBL] [Abstract][Full Text] [Related]
20. Robotic surgery of the skull base. Kupferman ME; Hanna E Otolaryngol Clin North Am; 2014 Jun; 47(3):415-23. PubMed ID: 24882799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]