These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24329053)

  • 1. Orbital-free bond breaking via machine learning.
    Snyder JC; Rupp M; Hansen K; Blooston L; Müller KR; Burke K
    J Chem Phys; 2013 Dec; 139(22):224104. PubMed ID: 24329053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium Bond Lengths from Orbital-Free Density Functional Theory.
    Finzel K
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32294892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracule densities in the strong-interaction limit of density functional theory.
    Gori-Giorgi P; Seidl M; Savin A
    Phys Chem Chem Phys; 2008 Jun; 10(23):3440-6. PubMed ID: 18535727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital- and state-dependent functionals in density-functional theory.
    Görling A
    J Chem Phys; 2005 Aug; 123(6):62203. PubMed ID: 16122289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2012 Jul; 137(1):014102. PubMed ID: 22779632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugate-gradient optimization method for orbital-free density functional calculations.
    Jiang H; Yang W
    J Chem Phys; 2004 Aug; 121(5):2030-6. PubMed ID: 15260756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding density functionals with machine learning.
    Snyder JC; Rupp M; Hansen K; Müller KR; Burke K
    Phys Rev Lett; 2012 Jun; 108(25):253002. PubMed ID: 23004593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective homogeneity of the exchange-correlation and non-interacting kinetic energy functionals under density scaling.
    Borgoo A; Teale AM; Tozer DJ
    J Chem Phys; 2012 Jan; 136(3):034101. PubMed ID: 22280738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exchange methods in Kohn-Sham theory.
    Teale AM; Tozer DJ
    Phys Chem Chem Phys; 2005 Aug; 7(16):2991-8. PubMed ID: 16186901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry.
    Gori-Giorgi P; Seidl M
    Phys Chem Chem Phys; 2010 Nov; 12(43):14405-19. PubMed ID: 20886144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approximate density-functional method using the Harris-Foulkes functional.
    Bellchambers GD; Manby FR
    J Chem Phys; 2011 Aug; 135(8):084105. PubMed ID: 21895157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact Kohn-Sham potential of strongly correlated finite systems.
    Helbig N; Tokatly IV; Rubio A
    J Chem Phys; 2009 Dec; 131(22):224105. PubMed ID: 20001022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.
    Rodríguez JI; Ayers PW; Götz AW; Castillo-Alvarado FL
    J Chem Phys; 2009 Jul; 131(2):021101. PubMed ID: 19603962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The weak covalent bond in NgAuF (Ng=Ar, Kr, Xe): A challenge for subsystem density functional theory.
    Beyhan SM; Götz AW; Jacob CR; Visscher L
    J Chem Phys; 2010 Jan; 132(4):044114. PubMed ID: 20113026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems.
    Hodak M; Lu W; Bernholc J
    J Chem Phys; 2008 Jan; 128(1):014101. PubMed ID: 18190179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio correlation functionals from second-order perturbation theory.
    Schweigert IV; Lotrich VF; Bartlett RJ
    J Chem Phys; 2006 Sep; 125(10):104108. PubMed ID: 16999516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate parameterization of the kinetic energy functional for calculations using exact-exchange.
    Kumar S; Sadigh B; Zhu S; Suryanarayana P; Hamel S; Gallagher B; Bulatov V; Klepeis J; Samanta A
    J Chem Phys; 2022 Jan; 156(2):024107. PubMed ID: 35032977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized unrestricted Kohn-Sham potentials from ab initio spin densities.
    Boguslawski K; Jacob CR; Reiher M
    J Chem Phys; 2013 Jan; 138(4):044111. PubMed ID: 23387572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bypassing the Kohn-Sham equations with machine learning.
    Brockherde F; Vogt L; Li L; Tuckerman ME; Burke K; Müller KR
    Nat Commun; 2017 Oct; 8(1):872. PubMed ID: 29021555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.