These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24329060)

  • 1. Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.
    Kwok YH; Xie H; Yam CY; Zheng X; Chen GH
    J Chem Phys; 2013 Dec; 139(22):224111. PubMed ID: 24329060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent density functional theory for quantum transport.
    Zheng X; Chen G; Mo Y; Koo S; Tian H; Yam C; Yan Y
    J Chem Phys; 2010 Sep; 133(11):114101. PubMed ID: 20866120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to time-dependent transport through an interacting quantum dot within the Keldysh formalism.
    Vovchenko V; Anchishkin D; Azema J; Lombardo P; Hayn R; Daré AM
    J Phys Condens Matter; 2014 Jan; 26(1):015306. PubMed ID: 24292208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent quantum transport: an efficient method based on Liouville-von-Neumann equation for single-electron density matrix.
    Xie H; Jiang F; Tian H; Zheng X; Kwok Y; Chen S; Yam C; Yan Y; Chen G
    J Chem Phys; 2012 Jul; 137(4):044113. PubMed ID: 22852603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipative time-dependent quantum transport theory.
    Zhang Y; Yam CY; Chen G
    J Chem Phys; 2013 Apr; 138(16):164121. PubMed ID: 23635125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-equilibrium Green's function transport theory for molecular junctions with general molecule-lead coupling and temperatures.
    Rahman H; Kleinekathöfer U
    J Chem Phys; 2018 Dec; 149(23):234108. PubMed ID: 30579320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical solver for first-principles transport calculation based on real-space finite-difference method.
    Iwase S; Hoshi T; Ono T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063305. PubMed ID: 26172820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reformulating time-dependent density functional theory with non-orthogonal localized molecular orbitals.
    Cui G; Fang W; Yang W
    Phys Chem Chem Phys; 2010 Jan; 12(2):416-21. PubMed ID: 20023819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance.
    Send R; Furche F
    J Chem Phys; 2010 Jan; 132(4):044107. PubMed ID: 20113019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of the wide-band limit in DFT-based molecular transport calculations.
    Verzijl CJ; Seldenthuis JS; Thijssen JM
    J Chem Phys; 2013 Mar; 138(9):094102. PubMed ID: 23485272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric response of a metal-molecule-metal junction to laser pulse by solving hierarchical equations of motion.
    Cao H; Zhang M; Tao T; Song M; Zhang C
    J Chem Phys; 2015 Feb; 142(8):084705. PubMed ID: 25725749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles modeling of electron transport.
    Stokbro K
    J Phys Condens Matter; 2008 Feb; 20(6):064216. PubMed ID: 21693878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio thermal transport properties of nanostructures from density functional perturbation theory.
    Calzolari A; Jayasekera T; Kim KW; Nardelli MB
    J Phys Condens Matter; 2012 Dec; 24(49):492204. PubMed ID: 23164749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.
    Kananenka AA; Zgid D
    J Chem Theory Comput; 2017 Nov; 13(11):5317-5331. PubMed ID: 28921986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the Chebychev expansion in quantum transport calculations.
    Popescu B; Rahman H; Kleinekathöfer U
    J Chem Phys; 2015 Apr; 142(15):154103. PubMed ID: 25903862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adiabatic approximation of time-dependent density matrix functional response theory.
    Pernal K; Giesbertz K; Gritsenko O; Baerends EJ
    J Chem Phys; 2007 Dec; 127(21):214101. PubMed ID: 18067343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.