These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 24329092)

  • 1. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains.
    Hanson DE; Barber JL; Subramanian G
    J Chem Phys; 2013 Dec; 139(22):224906. PubMed ID: 24329092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemistry and molecular dynamics studies of the entropic elasticity of localized molecular kinks in polyisoprene chains.
    Hanson DE; Martin RL
    J Chem Phys; 2010 Aug; 133(8):084903. PubMed ID: 20815590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular kink paradigm for rubber elasticity: numerical simulations of explicit polyisoprene networks at low to moderate tensile strains.
    Hanson DE
    J Chem Phys; 2011 Aug; 135(5):054902. PubMed ID: 21823727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of rubber networks at moderate to high tensile strains using a purely enthalpic force extension curve for individual chains.
    Hanson DE
    J Chem Phys; 2009 Dec; 131(22):224904. PubMed ID: 20001081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How far can a rubber molecule stretch before breaking? Ab initio study of tensile elasticity and failure in single-molecule polyisoprene and polybutadiene.
    Hanson DE; Martin RL
    J Chem Phys; 2009 Feb; 130(6):064903. PubMed ID: 19222294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Terminal Groups of
    Dixit M; Taniguchi T
    Biomacromolecules; 2023 Aug; 24(8):3589-3602. PubMed ID: 37527033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bond rupture force for sulfur chains calculated from quantum chemistry simulations and its relevance to the tensile strength of vulcanized rubber.
    Hanson DE; Barber JL
    Phys Chem Chem Phys; 2018 Mar; 20(13):8460-8465. PubMed ID: 29192298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distributions of chain lengths in a crosslinked polyisoprene network.
    Hanson DE
    J Chem Phys; 2011 Feb; 134(6):064906. PubMed ID: 21322733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation.
    Rose K; Tenberge KB; Steinbüchel A
    Biomacromolecules; 2005; 6(1):180-8. PubMed ID: 15638519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of proline in the elastic mechanism of hydrated spider silks.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1948-57. PubMed ID: 18515725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction.
    Urry DW; Parker TM
    J Muscle Res Cell Motil; 2002; 23(5-6):543-59. PubMed ID: 12785104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible, elastic and tear-resistant networks prepared by photo-crosslinking poly(trimethylene carbonate) macromers.
    Schüller-Ravoo S; Feijen J; Grijpma DW
    Acta Biomater; 2012 Oct; 8(10):3576-85. PubMed ID: 22688087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal Polymer End-Linked Nanoparticle Network Design Strategy to Manipulate the Structure-Mechanics Relation.
    Chen R; Zhang Z; Wan H; Liu J; Zhang L
    J Phys Chem B; 2021 Feb; 125(6):1680-1691. PubMed ID: 33533251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transition-induced elasticity of α-helical bioelastomeric fibres and networks.
    Miserez A; Guerette PA
    Chem Soc Rev; 2013 Mar; 42(5):1973-95. PubMed ID: 23229440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the abilities of natural rubber (NR) and synthetic polyisoprene cis-1,4 rubber (IR) to crystallize under strain at high strain rates.
    Candau N; Chazeau L; Chenal JM; Gauthier C; Munch E
    Phys Chem Chem Phys; 2016 Feb; 18(5):3472-81. PubMed ID: 26750589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio simulations of bond breaking in sulfur crosslinked isoprene oligomer units.
    Gehrke S; Alznauer HT; Karimi-Varzaneh HA; Becker JA
    J Chem Phys; 2017 Dec; 147(21):214703. PubMed ID: 29221404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of stress and strain in the interosseous ligament of the forearm based on fiber network theory.
    Pfaeffle HJ; Fischer KJ; Srinivasa A; Manson T; Woo SL; Tomaino M
    J Biomech Eng; 2006 Oct; 128(5):725-32. PubMed ID: 16995759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of discontinuous volume phase transitions in highly-charged crosslinked polyelectrolyte networks with explicit counterions in good solvent.
    Yin DW; Yan Q; de Pablo JJ
    J Chem Phys; 2005 Nov; 123(17):174909. PubMed ID: 16375571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling.
    Jeong D; Andricioaei I
    J Chem Phys; 2013 Mar; 138(11):114110. PubMed ID: 23534630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.