These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 24329213)
1. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations. Kleinert H; Zatloukal V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052106. PubMed ID: 24329213 [TBL] [Abstract][Full Text] [Related]
2. Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems. Giuggioli L; Neu Z Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180131. PubMed ID: 31329064 [TBL] [Abstract][Full Text] [Related]
3. Delay Fokker-Planck equations, Novikov's theorem, and Boltzmann distributions as small delay approximations. Frank TD Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011112. PubMed ID: 16089942 [TBL] [Abstract][Full Text] [Related]
4. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
5. Fractional Fokker-Planck equation for fractal media. Tarasov VE Chaos; 2005 Jun; 15(2):23102. PubMed ID: 16035878 [TBL] [Abstract][Full Text] [Related]
6. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation. Maoutsa D; Reich S; Opper M Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573 [TBL] [Abstract][Full Text] [Related]
7. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. Henry BI; Langlands TA; Straka P Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032 [TBL] [Abstract][Full Text] [Related]
8. Relaxation of the distribution function tails for systems described by Fokker-Planck equations. Chavanis PH; Lemou M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930 [TBL] [Abstract][Full Text] [Related]
9. Master equations and the theory of stochastic path integrals. Weber MF; Frey E Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551 [TBL] [Abstract][Full Text] [Related]
10. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related]
11. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems. Chen N; Majda AJ Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12864-12869. PubMed ID: 29158403 [TBL] [Abstract][Full Text] [Related]
14. Delay Fokker-Planck equations, perturbation theory, and data analysis for nonlinear stochastic systems with time delays. Frank TD Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031106. PubMed ID: 15903405 [TBL] [Abstract][Full Text] [Related]
15. Dynamic least-squares kernel density modeling of Fokker-Planck equations with application to neural population. Shotorban B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046706. PubMed ID: 20481859 [TBL] [Abstract][Full Text] [Related]
16. Stochastic Fokker-Planck equation in random environments. Bressloff PC Phys Rev E; 2016 Oct; 94(4-1):042129. PubMed ID: 27841623 [TBL] [Abstract][Full Text] [Related]
17. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises. Méndez V; Denisov SI; Campos D; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260 [TBL] [Abstract][Full Text] [Related]
18. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
19. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
20. Fokker-Planck-Kramers equations of a heavy ion in presence of external fields. Jiménez-Aquino JI; Romero-Bastida M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021106. PubMed ID: 17930005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]