These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24329237)
1. Contact processes in crowded environments. Xu SL; Schwarz JM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052130. PubMed ID: 24329237 [TBL] [Abstract][Full Text] [Related]
2. Absorbing phase transition in conserved lattice gas model on fractal lattices. Lee SB; Kim YN Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031137. PubMed ID: 17930229 [TBL] [Abstract][Full Text] [Related]
3. Universality split in absorbing phase transition with conserved field on fractal lattices. Lee SG; Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041122. PubMed ID: 18517593 [TBL] [Abstract][Full Text] [Related]
4. Universality class of the reversible-irreversible transition in sheared suspensions. Menon GI; Ramaswamy S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061108. PubMed ID: 19658474 [TBL] [Abstract][Full Text] [Related]
5. Influence of quenched disorder on absorbing phase transitions in the conserved lattice gas model. Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041123. PubMed ID: 22181103 [TBL] [Abstract][Full Text] [Related]
6. Absorbing phase transition with a conserved field. Park K; Kang S; Kim IM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066129. PubMed ID: 16089842 [TBL] [Abstract][Full Text] [Related]
7. Percolation of randomly distributed growing clusters: finite-size scaling and critical exponents for the square lattice. Tsakiris N; Maragakis M; Kosmidis K; Argyrakis P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041108. PubMed ID: 21230239 [TBL] [Abstract][Full Text] [Related]
8. Critical behavior of absorbing phase transitions for models in the Manna class with natural initial states. Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062133. PubMed ID: 25019750 [TBL] [Abstract][Full Text] [Related]
9. Contact process with sublattice symmetry breaking. de Oliveira MM; Dickman R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011125. PubMed ID: 21867131 [TBL] [Abstract][Full Text] [Related]
10. Absorbing phase transition in a conserved lattice gas model with next-nearest-neighbor hopping in one dimension. Lee SB Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062102. PubMed ID: 26764627 [TBL] [Abstract][Full Text] [Related]
11. Critical behavior of nonequilibrium continuous phase transition in A+BC catalytic reaction system. Hua DY Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066101. PubMed ID: 15697428 [TBL] [Abstract][Full Text] [Related]
12. Effect of diffusion in one-dimensional discontinuous absorbing phase transitions. Fiore CE; Landi GT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032123. PubMed ID: 25314411 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulations of two-dimensional hard core lattice gases. Fernandes HC; Arenzon JJ; Levin Y J Chem Phys; 2007 Mar; 126(11):114508. PubMed ID: 17381221 [TBL] [Abstract][Full Text] [Related]
14. Active-absorbing-state phase transition beyond directed percolation: a class of exactly solvable models. Basu U; Mohanty PK Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041143. PubMed ID: 19518209 [TBL] [Abstract][Full Text] [Related]
15. Dynamical scaling behavior of the one-dimensional conserved directed-percolation universality class. Kwon S; Kim Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051119. PubMed ID: 23004715 [TBL] [Abstract][Full Text] [Related]
16. Metastability in Schloegl's second model for autocatalysis: Lattice-gas realization with particle diffusion. Guo X; De Decker Y; Evans JW Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021121. PubMed ID: 20866789 [TBL] [Abstract][Full Text] [Related]
17. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers. Speck T; Chandler D J Chem Phys; 2012 May; 136(18):184509. PubMed ID: 22583302 [TBL] [Abstract][Full Text] [Related]
19. Critical behavior of a one-dimensional fixed-energy stochastic sandpile. Dickman R; Alava M; Muñoz MA; Peltola J; Vespignani A; Zapperi S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056104. PubMed ID: 11736011 [TBL] [Abstract][Full Text] [Related]
20. Coupled two-species model for the pair contact process with diffusion. Deng S; Li W; Täuber UC Phys Rev E; 2020 Oct; 102(4-1):042126. PubMed ID: 33212676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]