These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24329271)

  • 1. Effects of viscosity, surface tension, and evaporation rate of solvent on dry colloidal structures: a lattice Boltzmann study.
    Munekata T; Suzuki T; Yamakawa S; Asahi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052314. PubMed ID: 24329271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures.
    Qin F; Mazloomi Moqaddam A; Del Carro L; Kang Q; Brunschwiler T; Derome D; Carmeliet J
    Phys Rev E; 2019 May; 99(5-1):053306. PubMed ID: 31212433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Evaporation and Particle Assembly in Colloidal Droplets.
    Zhao M; Yong X
    Langmuir; 2017 Jun; 33(23):5734-5744. PubMed ID: 28548503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study.
    Joshi AS; Sun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041401. PubMed ID: 21230271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drying Kinetics and Particle Formation from Dilute Colloidal Suspensions in Aerosol Droplets.
    Archer J; Walker JS; Gregson FKA; Hardy DA; Reid JP
    Langmuir; 2020 Oct; 36(42):12481-12493. PubMed ID: 32975425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model.
    Dzwinel W; Yuen DA
    J Colloid Interface Sci; 2002 Mar; 247(2):463-80. PubMed ID: 16290488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulations of drying suspensions of soft particles.
    Wouters M; Aouane O; Sega M; Harting J
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200399. PubMed ID: 34455838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the rate of evaporation and film thickness on nonuniform drying of film-forming concentrated colloidal suspensions.
    Narita T; Hébraud P; Lequeux F
    Eur Phys J E Soft Matter; 2005 May; 17(1):69-76. PubMed ID: 15864729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical and quantitative review of the stratification of particles during the drying of colloidal films.
    Schulz M; Keddie JL
    Soft Matter; 2018 Aug; 14(30):6181-6197. PubMed ID: 30024010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sagging of evaporating droplets of colloidal suspensions on inclined substrates.
    Espín L; Kumar S
    Langmuir; 2014 Oct; 30(40):11966-74. PubMed ID: 25229746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast evaporation of spreading droplets of colloidal suspensions.
    Maki KL; Kumar S
    Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mathematical Model for Crater Defect Formation in a Drying Paint Layer.
    Evans PL; Schwartz LW; Roy RV
    J Colloid Interface Sci; 2000 Jul; 227(1):191-205. PubMed ID: 10860611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the evaporation of thin films of colloidal suspensions using dynamical density functional theory.
    Robbins MJ; Archer AJ; Thiele U
    J Phys Condens Matter; 2011 Oct; 23(41):415102. PubMed ID: 21952487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport dynamics of charged colloidal particles during directional drying of suspensions in a confined microchannel.
    Sui J
    Phys Rev E; 2019 Jun; 99(6-1):062606. PubMed ID: 31330699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions.
    Rivas N; Frijters S; Pagonabarraga I; Harting J
    J Chem Phys; 2018 Apr; 148(14):144101. PubMed ID: 29655348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing complex fluid interfaces to control colloidal assembly and deposition.
    Zhao M; Luo W; Yong X
    J Colloid Interface Sci; 2019 Mar; 540():602-611. PubMed ID: 30685683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.
    Dzwinel W; Yuen DA; Boryczko K
    J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation-induced assembly of colloidal crystals.
    Howard MP; Reinhart WF; Sanyal T; Shell MS; Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2018 Sep; 149(9):094901. PubMed ID: 30195293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process.
    Yabu H; Higuchi T; Ijiro K; Shimomura M
    Chaos; 2005 Dec; 15(4):047505. PubMed ID: 16396598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.