These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24329299)

  • 1. Reluctance of a neutral nanoparticle to enter a charged pore.
    Getfert S; Töws T; Reimann P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052710. PubMed ID: 24329299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.
    Vogel R; Anderson W; Eldridge J; Glossop B; Willmott G
    Anal Chem; 2012 Apr; 84(7):3125-31. PubMed ID: 22369672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein diffusion through charged nanopores with different radii at low ionic strength.
    Stroeve P; Rahman M; Naidu LD; Chu G; Mahmoudi M; Ramirez P; Mafe S
    Phys Chem Chem Phys; 2014 Oct; 16(39):21570-6. PubMed ID: 25189648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.
    Pizio O; Sokołowski S
    J Chem Phys; 2013 May; 138(20):204715. PubMed ID: 23742508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charged particle separation by an electrically tunable nanoporous membrane.
    Jou IA; Melnikov DV; Nadtochiy A; Gracheva ME
    Nanotechnology; 2014 Apr; 25(14):145201. PubMed ID: 24621944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles.
    Qiu Y; Lin CY; Hinkle P; Plett TS; Yang C; Chacko JV; Digman MA; Yeh LH; Hsu JP; Siwy ZS
    ACS Nano; 2016 Sep; 10(9):8413-22. PubMed ID: 27532683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoresis of a soft particle within a cylindrical pore: polarization effect with the nonlinear Poisson-Boltzmann equation.
    Huang CH; Cheng WL; He YY; Lee E
    J Phys Chem B; 2010 Aug; 114(31):10114-25. PubMed ID: 20684634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic Motion of a Spherical Particle with a Thick Double Layer in Bounded Flows.
    Shugai AA; Carnie SL
    J Colloid Interface Sci; 1999 May; 213(2):298-315. PubMed ID: 10222069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces.
    Hulings ZK; Melnikov DV; Gracheva ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062713. PubMed ID: 26172742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and simulation of nanoparticle separation through a solid-state nanopore.
    Jubery TZ; Prabhu AS; Kim MJ; Dutta P
    Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.
    Li F; Hill RJ
    J Colloid Interface Sci; 2013 Mar; 394():1-12. PubMed ID: 23153681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis of a finite cylinder positioned eccentrically along the axis of a long cylindrical pore.
    Hsu JP; Kuo CC
    J Phys Chem B; 2006 Sep; 110(35):17607-15. PubMed ID: 16942106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.
    Duval JF; Farinha JP; Pinheiro JP
    Langmuir; 2013 Nov; 29(45):13821-35. PubMed ID: 24117349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polarization of a nanoparticle surrounded by a thick electric double layer.
    Zhao H; Bau HH
    J Colloid Interface Sci; 2009 May; 333(2):663-71. PubMed ID: 19233378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-specific forces between a colloidal nanoprobe and a charged surface.
    Lima ER; Biscaia EC; Boström M; Tavares FW
    Langmuir; 2007 Jul; 23(14):7456-8. PubMed ID: 17536847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time modulated nanoparticle separation with an ultra-large dynamic range.
    Zeming KK; Thakor NV; Zhang Y; Chen CH
    Lab Chip; 2016 Jan; 16(1):75-85. PubMed ID: 26575003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.