These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

827 related articles for article (PubMed ID: 24329353)

  • 1. Transition of the scaling law in inverse energy cascade range caused by a nonlocal excitation of coherent structures observed in two-dimensional turbulent fields.
    Mizuta A; Matsumoto T; Toh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053009. PubMed ID: 24329353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonrobustness of the two-dimensional turbulent inverse cascade.
    Scott RK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046301. PubMed ID: 17500987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse energy cascade in forced two-dimensional quantum turbulence.
    Reeves MT; Billam TP; Anderson BP; Bradley AS
    Phys Rev Lett; 2013 Mar; 110(10):104501. PubMed ID: 23521262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence.
    Sen A; Mininni PD; Rosenberg D; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036319. PubMed ID: 23031025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profile of a two-dimensional vortex condensate beyond the universal limit.
    Parfenyev V
    Phys Rev E; 2022 Aug; 106(2-2):025102. PubMed ID: 36109998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of saturated energy condensation in two-dimensional turbulence.
    Chan CK; Mitra D; Brandenburg A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036315. PubMed ID: 22587188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.
    Sengupta TK; Bhaumik S; Bhumkar YG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow.
    Willis AP; Hwang Y; Cossu C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036321. PubMed ID: 21230185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Transition to Large Scale Coherent Structures in Two-Dimensional Active Matter Turbulence.
    Linkmann M; Boffetta G; Marchetti MC; Eckhardt B
    Phys Rev Lett; 2019 May; 122(21):214503. PubMed ID: 31283308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of forcing in three-dimensional turbulent flows.
    Biferale L; Lanotte AS; Toschi F
    Phys Rev Lett; 2004 Mar; 92(9):094503. PubMed ID: 15089473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.
    Chen X; Fried E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos and Predictability of Homogeneous-Isotropic Turbulence.
    Boffetta G; Musacchio S
    Phys Rev Lett; 2017 Aug; 119(5):054102. PubMed ID: 28949715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal profile of the vortex condensate in two-dimensional turbulence.
    Laurie J; Boffetta G; Falkovich G; Kolokolov I; Lebedev V
    Phys Rev Lett; 2014 Dec; 113(25):254503. PubMed ID: 25554886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.
    Pietarila Graham J; Holm DD; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsteady turbulence cascades.
    Goto S; Vassilicos JC
    Phys Rev E; 2016 Nov; 94(5-1):053108. PubMed ID: 27967192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lagrangian chaos and the effect of drag on the enstrophy cascade in two-dimensional turbulence.
    Nam K; Ott E; Antonsen TM; Guzdar PN
    Phys Rev Lett; 2000 May; 84(22):5134-7. PubMed ID: 10990885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct numerical simulations of capillary wave turbulence.
    Deike L; Fuster D; Berhanu M; Falcon E
    Phys Rev Lett; 2014 Jun; 112(23):234501. PubMed ID: 24972211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittency in two-dimensional turbulence with drag.
    Tsang YK; Ott E; Antonsen TM; Guzdar PN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066313. PubMed ID: 16089873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical mechanism of the two-dimensional inverse energy cascade.
    Chen S; Ecke RE; Eyink GL; Rivera M; Wan M; Xiao Z
    Phys Rev Lett; 2006 Mar; 96(8):084502. PubMed ID: 16606186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.