These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24329812)

  • 1. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients.
    Fortunel C; Ruelle J; Beauchêne J; Fine PVA; Baraloto C
    New Phytol; 2014 Apr; 202(1):79-94. PubMed ID: 24329812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species.
    Santiago LS; De Guzman ME; Baraloto C; Vogenberg JE; Brodie M; Hérault B; Fortunel C; Bonal D
    New Phytol; 2018 May; 218(3):1015-1024. PubMed ID: 29457226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.
    Schuldt B; Leuschner C; Brock N; Horna V
    Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest.
    Cosme LHM; Schietti J; Costa FRC; Oliveira RS
    New Phytol; 2017 Jul; 215(1):113-125. PubMed ID: 28369998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal water stress tolerance and habitat associations within four neotropical tree genera.
    Baraloto C; Morneau F; Bonal D; Blanc L; Ferry B
    Ecology; 2007 Feb; 88(2):478-89. PubMed ID: 17479765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-individual variation of trunk and branch xylem density in tropical trees.
    Sarmiento C; Patiño S; Paine CE; Beauchêne J; Thibaut A; Baraloto C
    Am J Bot; 2011 Jan; 98(1):140-9. PubMed ID: 21613092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root and branch hydraulic functioning and trait coordination across organs in drought-deciduous and evergreen tree species of a subtropical highland forest.
    Schönauer M; Hietz P; Schuldt B; Rewald B
    Front Plant Sci; 2023; 14():1127292. PubMed ID: 37377798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.
    Moser G; Schuldt B; Hertel D; Horna V; Coners H; Barus H; Leuschner C
    Glob Chang Biol; 2014 May; 20(5):1481-97. PubMed ID: 24115242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies.
    Osazuwa-Peters OL; Wright SJ; Zanne AE
    Am J Bot; 2014 May; 101(5):803-11. PubMed ID: 24793318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests.
    Lamarre GP; Hérault B; Fine PV; Vedel V; Lupoli R; Mesones I; Baraloto C
    J Anim Ecol; 2016 Jan; 85(1):227-39. PubMed ID: 26346553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species.
    Poorter L; McDonald I; Alarcón A; Fichtler E; Licona JC; Peña-Claros M; Sterck F; Villegas Z; Sass-Klaassen U
    New Phytol; 2010 Jan; 185(2):481-92. PubMed ID: 19925555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leading dimensions in absorptive root trait variation across 96 subtropical forest species.
    Kong D; Ma C; Zhang Q; Li L; Chen X; Zeng H; Guo D
    New Phytol; 2014 Aug; 203(3):863-72. PubMed ID: 24824672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific gravity of woody tissue from lowland Neotropical plants: differences among forest types.
    Casas LF; Aldana AM; Henao-Diaz F; Villanueva B; Stevenson PR
    Ecology; 2017 May; 98(5):1474. PubMed ID: 28241375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density.
    McCulloh KA; Meinzer FC; Sperry JS; Lachenbruch B; Voelker SL; Woodruff DR; Domec JC
    Oecologia; 2011 Sep; 167(1):27-37. PubMed ID: 21445684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wood traits related to size and life history of trees in a Panamanian rainforest.
    Hietz P; Rosner S; Hietz-Seifert U; Wright SJ
    New Phytol; 2017 Jan; 213(1):170-180. PubMed ID: 27533709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Niche breadth of Amazonian trees increases with niche optimum across broad edaphic gradients.
    Vleminckx J; Barrantes OV; Fortunel C; Paine CET; Bauman D; Engel J; Petronelli P; Dávila N; Rios M; Valderrama Sandoval EH; Mesones I; Allié E; Goret JY; Draper FC; Guevara Andino JE; Béroujon S; Fine PVA; Baraloto C
    Ecology; 2023 Jul; 104(7):e4053. PubMed ID: 37079023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats?
    Lopez OR; Kursar TA
    Oecologia; 2003 Jul; 136(2):193-204. PubMed ID: 12743794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island.
    Trueba S; Pouteau R; Lens F; Feild TS; Isnard S; Olson ME; Delzon S
    Plant Cell Environ; 2017 Feb; 40(2):277-289. PubMed ID: 27862015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly local environmental variability promotes intrapopulation divergence of quantitative traits: an example from tropical rain forest trees.
    Brousseau L; Bonal D; Cigna J; Scotti I
    Ann Bot; 2013 Oct; 112(6):1169-79. PubMed ID: 24023042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary diversity is associated with wood productivity in Amazonian forests.
    Coelho de Souza F; Dexter KG; Phillips OL; Pennington RT; Neves D; Sullivan MJP; Alvarez-Davila E; Alves Á; Amaral I; Andrade A; Aragao LEOC; Araujo-Murakami A; Arets EJMM; Arroyo L; Aymard C GA; Bánki O; Baraloto C; Barroso JG; Boot RGA; Brienen RJW; Brown F; Camargo JLC; Castro W; Chave J; Cogollo A; Comiskey JA; Cornejo-Valverde F; da Costa AL; de Camargo PB; Di Fiore A; Feldpausch TR; Galbraith DR; Gloor E; Goodman RC; Gilpin M; Herrera R; Higuchi N; Honorio Coronado EN; Jimenez-Rojas E; Killeen TJ; Laurance S; Laurance WF; Lopez-Gonzalez G; Lovejoy TE; Malhi Y; Marimon BS; Marimon-Junior BH; Mendoza C; Monteagudo-Mendoza A; Neill DA; Vargas PN; Peñuela Mora MC; Pickavance GC; Pipoly JJ; Pitman NCA; Poorter L; Prieto A; Ramirez F; Roopsind A; Rudas A; Salomão RP; Silva N; Silveira M; Singh J; Stropp J; Ter Steege H; Terborgh J; Thomas-Caesar R; Umetsu RK; Vasquez RV; Célia-Vieira I; Vieira SA; Vos VA; Zagt RJ; Baker TR
    Nat Ecol Evol; 2019 Dec; 3(12):1754-1761. PubMed ID: 31712699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.