These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24330041)

  • 41. Thermal and Fluid Dynamics Performance of MWCNT-Water Nanofluid Based on Thermophysical Properties: An Experimental and Theoretical Study.
    Lyu Z; Asadi A; Alarifi IM; Ali V; Foong LK
    Sci Rep; 2020 Mar; 10(1):5185. PubMed ID: 32198454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel WS
    Martínez-Merino P; Midgley SD; Martín EI; Estellé P; Alcántara R; Sánchez-Coronilla A; Grau-Crespo R; Navas J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5793-5804. PubMed ID: 31942792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.
    Chamsa-Ard W; Brundavanam S; Fung CC; Fawcett D; Poinern G
    Nanomaterials (Basel); 2017 May; 7(6):. PubMed ID: 28561802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.
    Haque AKMM; Kim S; Kim J; Noh J; Huh S; Choi B; Chung H; Jeong H
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1730-1740. PubMed ID: 29448652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple economic and heat transfer analysis of the nanoparticles use.
    Wciślik S
    Chem Zvesti; 2017; 71(12):2395-2401. PubMed ID: 29104354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of pressurization on the enthalpy of vaporization for the SiO
    Baniamerian Z; Jafari AS; Perera N
    Phys Chem Chem Phys; 2022 Dec; 25(1):673-683. PubMed ID: 36485035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Review on Heat Transfer of Nanofluids by Applied Electric Field or Magnetic Field.
    Wang G; Zhang Z; Wang R; Zhu Z
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a predictive model for estimating the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids using support vector regression.
    Alade IO; Abd Rahman MA; Bagudu A; Abbas Z; Yaakob Y; Saleh TA
    Heliyon; 2019 Jun; 5(6):e01882. PubMed ID: 31304407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces.
    Kruse CM; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Int J Heat Mass Transf; 2015 Mar; 82():109-116. PubMed ID: 30449897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.
    Balla HH; Abdullah S; Mohdfaizal W; Zulkifli R; Sopian K
    J Oleo Sci; 2013; 62(7):533-9. PubMed ID: 23823920
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanofluids for heat transfer: an engineering approach.
    Timofeeva EV; Yu W; France DM; Singh D; Routbort JL
    Nanoscale Res Lett; 2011 Feb; 6(1):182. PubMed ID: 21711700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer.
    Song JW; Fan LW
    Adv Colloid Interface Sci; 2021 Feb; 288():102339. PubMed ID: 33385775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling.
    Song Y; Gong S; Vaartstra G; Wang EN
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12629-12635. PubMed ID: 33683095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.
    Wang Q; Chen R
    Nano Lett; 2018 May; 18(5):3096-3103. PubMed ID: 29624394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pressure-drop viscosity measurements for gamma-Al2O nanoparticles in water and PG-water mixtures (nanofluids).
    Lai WY; Phelan PE; Prasher RS
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8026-34. PubMed ID: 21121293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions.
    Philip J
    Adv Colloid Interface Sci; 2023 Jan; 311():102810. PubMed ID: 36417827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of Boiling with Scalable Sandblasted Surfaces.
    Song Y; Wang C; Preston DJ; Su G; Rahman MM; Cha H; Seong JH; Philips B; Bucci M; Wang EN
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9788-9794. PubMed ID: 35143158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
    Sekhar YR; Sharma KV; Kamal S
    Environ Sci Pollut Res Int; 2016 May; 23(10):9411-7. PubMed ID: 26593731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.