BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24330085)

  • 1. Structural findings and molecular modeling approach of a TFPI-like inhibitor.
    Pasqualoto KF; Balan A; Barreto SA; Simons SM; Chudzinski-Tavassi AM
    Protein Pept Lett; 2014 May; 21(5):452-7. PubMed ID: 24330085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis.
    Francischetti IM; Mather TN; Ribeiro JM
    Thromb Haemost; 2004 May; 91(5):886-98. PubMed ID: 15116248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo.
    Branco VG; Iqbal A; Alvarez-Flores MP; Sciani JM; de Andrade SA; Iwai LK; Serrano SM; Chudzinski-Tavassi AM
    Biochim Biophys Acta; 2016 Oct; 1864(10):1428-35. PubMed ID: 27479486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tick salivary gland as potential natural source for the discovery of promising antitumor drug candidates.
    Chudzinski-Tavassi AM; Morais KL; Pacheco MT; Pasqualoto KF; de Souza JG
    Biomed Pharmacother; 2016 Feb; 77():14-9. PubMed ID: 26796259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The second Kunitz domain of human tissue factor pathway inhibitor: cloning, structure determination and interaction with factor Xa.
    Burgering MJ; Orbons LP; van der Doelen A; Mulders J; Theunissen HJ; Grootenhuis PD; Bode W; Huber R; Stubbs MT
    J Mol Biol; 1997 Jun; 269(3):395-407. PubMed ID: 9199408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate.
    Lobba ARM; Alvarez-Flores MP; Fessel MR; Buri MV; Oliveira DS; Gomes RN; Cunegundes PS; DeOcesano-Pereira C; Cinel VD; Chudzinski-Tavassi AM
    Front Mol Biosci; 2022; 9():936107. PubMed ID: 36052162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of regions distal to glycine-160 to the anticoagulant activity of tissue factor pathway inhibitor.
    Lockett JM; Mast AE
    Biochemistry; 2002 Apr; 41(15):4989-97. PubMed ID: 11939795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional characterization of tissue factor pathway inhibitor following degradation by matrix metalloproteinase-8.
    Cunningham AC; Hasty KA; Enghild JJ; Mast AE
    Biochem J; 2002 Oct; 367(Pt 2):451-8. PubMed ID: 12117418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and biology of tissue factor pathway inhibitor.
    Bajaj MS; Birktoft JJ; Steer SA; Bajaj SP
    Thromb Haemost; 2001 Oct; 86(4):959-72. PubMed ID: 11686353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor.
    Sprecher CA; Kisiel W; Mathewes S; Foster DC
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3353-7. PubMed ID: 8159751
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    De Paula VS; Silva FHS; Francischetti IMB; Monteiro RQ; Valente AP
    Biomol NMR Assign; 2017 Oct; 11(2):293-296. PubMed ID: 28856584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory properties of separate recombinant Kunitz-type-protease-inhibitor domains from tissue-factor-pathway inhibitor.
    Petersen LC; Bjørn SE; Olsen OH; Nordfang O; Norris F; Norris K
    Eur J Biochem; 1996 Jan; 235(1-2):310-6. PubMed ID: 8631347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial expression, purification, and partial characterization of amino acids 94-155 of human tissue factor pathway inhibitor (TFPI) as an inhibitor of blood coagulation factor Xa.
    Day KC; Welsch DJ
    Thromb Res; 1992 Dec; 68(4-5):369-81. PubMed ID: 1290165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural mechanism for heparin-binding of the third Kunitz domain of human tissue factor pathway inhibitor.
    Mine S; Yamazaki T; Miyata T; Hara S; Kato H
    Biochemistry; 2002 Jan; 41(1):78-85. PubMed ID: 11772005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structure determination of Ixolaris and factor X(a) interaction reveals a noncanonical mechanism of Kunitz inhibition.
    De Paula VS; Sgourakis NG; Francischetti IMB; Almeida FCL; Monteiro RQ; Valente AP
    Blood; 2019 Aug; 134(8):699-708. PubMed ID: 31133602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory properties of a novel human Kunitz-type protease inhibitor homologous to tissue factor pathway inhibitor.
    Petersen LC; Sprecher CA; Foster DC; Blumberg H; Hamamoto T; Kisiel W
    Biochemistry; 1996 Jan; 35(1):266-72. PubMed ID: 8555184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue factor residues Lys165 and Lys166 are essential for rapid formation of the quaternary complex of tissue factor.VIIa with Xa.tissue factor pathway inhibitor.
    Rao LV; Ruf W
    Biochemistry; 1995 Aug; 34(34):10867-71. PubMed ID: 7662667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary DNA sequencing of canine tissue factor pathway inhibitor reveals a unique nanomeric repetitive sequence between the second and third Kunitz domains.
    Girard TJ; Gailani D; Broze GJ
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):923-8. PubMed ID: 7980463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of secreted Kunitz domain 1 variants of tissue factor pathway inhibitor.
    Johnson K; Zaror I; Bauer D; Choi Y; Creasey A; Innis M
    Thromb Haemost; 1998 Oct; 80(4):585-7. PubMed ID: 9798974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of catalytic cleft and exosite residues of factor VIIa for complex formation with tissue factor pathway inhibitor.
    Iakhiaev A; Ruf W; Rao LV
    Thromb Haemost; 2001 Mar; 85(3):458-63. PubMed ID: 11307815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.