These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Calcium-activated inward spike after-currents in bursting neurone R15 of Aplysia. Lewis DV J Physiol; 1988 Jan; 395():285-302. PubMed ID: 2457678 [TBL] [Abstract][Full Text] [Related]
3. Voltage and ion dependences of the slow currents which mediate bursting in Aplysia neurone R15. Adams WB; Levitan IB J Physiol; 1985 Mar; 360():69-93. PubMed ID: 2580972 [TBL] [Abstract][Full Text] [Related]
4. Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones. Kramer RH; Zucker RS J Physiol; 1985 May; 362():131-60. PubMed ID: 2410598 [TBL] [Abstract][Full Text] [Related]
6. Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia. Swandulla D; Lux HD J Neurophysiol; 1985 Dec; 54(6):1430-43. PubMed ID: 2418170 [TBL] [Abstract][Full Text] [Related]
7. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. Canavier CC; Clark JW; Byrne JH J Neurophysiol; 1991 Dec; 66(6):2107-24. PubMed ID: 1725879 [TBL] [Abstract][Full Text] [Related]
8. Effect of ethanol on subthreshold currents of Aplysia pacemaker neurons. Schwartz MH Brain Res; 1985 Apr; 332(2):337-53. PubMed ID: 2581654 [TBL] [Abstract][Full Text] [Related]
10. Currents under voltage clamp of burst-forming neurons of the cardiac ganglion of the lobster (Homarus americanus). Tazaki K; Cooke IM J Neurophysiol; 1986 Dec; 56(6):1739-62. PubMed ID: 2433414 [TBL] [Abstract][Full Text] [Related]
11. Properties of subthreshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro. Stafstrom CE; Schwindt PC; Flatman JA; Crill WE J Neurophysiol; 1984 Aug; 52(2):244-63. PubMed ID: 6090604 [TBL] [Abstract][Full Text] [Related]
12. Slow depolarizing and hyperpolarizing currents which mediate bursting in Aplysia neurone R15. Adams WB J Physiol; 1985 Mar; 360():51-68. PubMed ID: 3989723 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms for signal transformation in lemniscal auditory thalamus. Tennigkeit F; Schwarz DW; Puil E J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860 [TBL] [Abstract][Full Text] [Related]
14. Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. Azouz R; Jensen MS; Yaari Y J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):211-23. PubMed ID: 8730596 [TBL] [Abstract][Full Text] [Related]
15. Rat hippocampal neurons in culture: Ca2+ and Ca2+-dependent K+ conductances. Segal M; Barker JL J Neurophysiol; 1986 Apr; 55(4):751-66. PubMed ID: 3009729 [TBL] [Abstract][Full Text] [Related]
16. Intrinsic response properties of bursting neurons in the nucleus principalis trigemini of the gerbil. Sandler VM; Puil E; Schwarz DW Neuroscience; 1998 Apr; 83(3):891-904. PubMed ID: 9483572 [TBL] [Abstract][Full Text] [Related]
17. Slow membrane currents in bursting pace-maker neurones of Tritonia. Smith SJ; Thompson SH J Physiol; 1987 Jan; 382():425-48. PubMed ID: 2442366 [TBL] [Abstract][Full Text] [Related]
18. Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. Constanti A; Sim JA J Physiol; 1987 Jun; 387():173-94. PubMed ID: 2443678 [TBL] [Abstract][Full Text] [Related]
19. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig. Sánchez D; Ribas J J Physiol; 1991; 440():167-87. PubMed ID: 1804959 [TBL] [Abstract][Full Text] [Related]
20. Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. Smith SJ; Zucker RS J Physiol; 1980 Mar; 300():167-96. PubMed ID: 6247486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]