These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24330765)

  • 1. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.
    Qureshi A; Thakur N; Kumar M
    J Transl Med; 2013 Dec; 11():305. PubMed ID: 24330765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASPsiRNA: A Resource of ASP-siRNAs Having Therapeutic Potential for Human Genetic Disorders and Algorithm for Prediction of Their Inhibitory Efficacy.
    Monga I; Qureshi A; Thakur N; Gupta AK; Kumar M
    G3 (Bethesda); 2017 Sep; 7(9):2931-2943. PubMed ID: 28696921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs.
    Dar SA; Gupta AK; Thakur A; Kumar M
    RNA Biol; 2016 Nov; 13(11):1144-1151. PubMed ID: 27603513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AVCpred: an integrated web server for prediction and design of antiviral compounds.
    Qureshi A; Kaur G; Kumar M
    Chem Biol Drug Des; 2017 Jan; 89(1):74-83. PubMed ID: 27490990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing of highly effective complementary and mismatch siRNAs for silencing a gene.
    Ahmed F; Raghava GP
    PLoS One; 2011; 6(8):e23443. PubMed ID: 21853133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VIRsiRNAdb: a curated database of experimentally validated viral siRNA/shRNA.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D230-6. PubMed ID: 22139916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AVPpred: collection and prediction of highly effective antiviral peptides.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of guide strand of microRNAs from its sequence and secondary structure.
    Ahmed F; Ansari HR; Raghava GP
    BMC Bioinformatics; 2009 Apr; 10():105. PubMed ID: 19358699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
    Jiang P; Wu H; Da Y; Sang F; Wei J; Sun X; Lu Z
    Comput Methods Programs Biomed; 2007 Sep; 87(3):230-8. PubMed ID: 17644215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus.
    Zheng BJ; Guan Y; Tang Q; Du C; Xie FY; He ML; Chan KW; Wong KL; Lader E; Woodle MC; Lu PY; Li B; Zhong N
    Antivir Ther; 2004 Jun; 9(3):365-74. PubMed ID: 15259899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. siRNAmod: A database of experimentally validated chemically modified siRNAs.
    Dar SA; Thakur A; Qureshi A; Kumar M
    Sci Rep; 2016 Jan; 6():20031. PubMed ID: 26818131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Immunomodulatory potential of an RNA sequence for designing non-toxic siRNAs and RNA-based vaccine adjuvants.
    Chaudhary K; Nagpal G; Dhanda SK; Raghava GP
    Sci Rep; 2016 Feb; 6():20678. PubMed ID: 26861761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics.
    Lu ZJ; Mathews DH
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W104-8. PubMed ID: 18490376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of hyperfunctional siRNAs with improved potency and specificity.
    Wang X; Wang X; Varma RK; Beauchamp L; Magdaleno S; Sendera TJ
    Nucleic Acids Res; 2009 Dec; 37(22):e152. PubMed ID: 19846596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.
    ElHefnawi M; Kim T; Kamar MA; Min S; Hassan NM; El-Ahwany E; Kim H; Zada S; Amer M; Windisch MP
    PLoS One; 2016; 11(7):e0159211. PubMed ID: 27441640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).
    Mysara M; Elhefnawi M; Garibaldi JM
    J Biomed Inform; 2012 Jun; 45(3):528-34. PubMed ID: 22388012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIVsirDB: a database of HIV inhibiting siRNAs.
    Tyagi A; Ahmed F; Thakur N; Sharma A; Raghava GP; Kumar M
    PLoS One; 2011; 6(10):e25917. PubMed ID: 22022467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. siVirus: web-based antiviral siRNA design software for highly divergent viral sequences.
    Naito Y; Ui-Tei K; Nishikawa T; Takebe Y; Saigo K
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W448-50. PubMed ID: 16845046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rational study for identification of highly effective siRNAs against hepatitis B virus.
    Thongthae N; Payungporn S; Poovorawan Y; T-Thienprasert NP
    Exp Mol Pathol; 2014 Aug; 97(1):120-7. PubMed ID: 24953337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.