These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 2433157)

  • 1. Interaction of myelin basic protein with the different components of the ATP,Mg-dependent protein phosphatase system.
    Vandenheede JR; Van Lint J; Vanden Abeele C; Merlevede W
    FEBS Lett; 1987 Jan; 211(2):190-4. PubMed ID: 2433157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective activation of the two catalytic sites in the ATP.Mg-dependent phosphoprotein phosphatase by kinase Fa and Mn2+ ion.
    Yang SD
    Int J Biochem; 1990; 22(7):717-9. PubMed ID: 2169437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the ATP.Mg-dependent protein phosphatase activator (FA) as a myelin basic protein kinase in the brain.
    Yang SD
    J Biol Chem; 1986 Sep; 261(25):11786-91. PubMed ID: 3017947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ATP,Mg-dependent protein phosphatase: regulation by casein kinase-1.
    Agostinis P; Vandenheede JR; Goris J; Meggio F; Pinna LA; Merlevede W
    FEBS Lett; 1987 Nov; 224(2):385-90. PubMed ID: 2826233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the dephosphorylation of the ATP,Mg-dependent protein phosphatase modulator.
    Vandenheede JR; Vanden Abeele C; Merlevede W
    FEBS Lett; 1987 Jun; 216(2):291-4. PubMed ID: 3034679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of an ATP.Mg-dependent protein phosphatase from pig brain.
    Yang SD; Fong YL
    J Biol Chem; 1985 Nov; 260(25):13464-70. PubMed ID: 2414281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of a reconstituted Mg-ATP-dependent protein phosphatase.
    Resink TJ; Hemmings BA; Tung HY; Cohen P
    Eur J Biochem; 1983 Jun; 133(2):455-61. PubMed ID: 6303789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous basic protein phosphatases in the brain myelin.
    Yang SD; Liu JS; Fong YL; Yu JS; Tzen TC
    J Neurochem; 1987 Jan; 48(1):160-6. PubMed ID: 2432173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, subunit composition and regulatory properties of the ATP X Mg2+-dependent form of type I phosphoprotein phosphatase from bovine heart.
    Price DJ; Tabarini D; Li HC
    Eur J Biochem; 1986 Aug; 158(3):635-45. PubMed ID: 3015619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATP, Mg-dependent phosphatase: role of Mg ions in the expression of the phosphorylase phosphatase activity.
    Vandenheede JR; Vanden Abeele CC; Merlevede W
    Biochem Biophys Res Commun; 1986 Apr; 136(1):16-21. PubMed ID: 3010962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protein phosphatases involved in cellular regulation. Comparison of native and reconstituted Mg-ATP-dependent protein phosphatases from rabbit skeletal muscle.
    Tung HY; Cohen P
    Eur J Biochem; 1984 Nov; 145(1):57-64. PubMed ID: 6092083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of activation of protein kinase FA (an activating factor of ATP.Mg-dependent protein phosphatase) in brain myelin.
    Yang SD; Yu JS; Hua CW
    J Protein Chem; 1990 Feb; 9(1):75-82. PubMed ID: 2160245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP,Mg-dependent protein phosphatase. Regulation by inhibitor-1 or modulator protein and stabilizing role of Mg2+ ions.
    Abeele CV; Vandenheede JR; Merlevede W
    J Biol Chem; 1987 Oct; 262(29):14086-9. PubMed ID: 2820994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the deinhibitor protein in the interconversion of the ATP,Mg-dependent protein phosphatase.
    Goris J; Waelkens E; Merlevede W
    Biochem Biophys Res Commun; 1983 Oct; 116(1):349-54. PubMed ID: 6315009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MgATP-dependent protein phosphatase and protein phosphatase 1 have identical substrate specificities.
    Stewart AA; Hemmings BA; Cohen P; Goris J; Merlevede W
    Eur J Biochem; 1981 Mar; 115(1):197-205. PubMed ID: 6262081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and partial characterization of a latent ATP, Mg-dependent protein phosphatase in rabbit skeletal muscle cytosol.
    Vandenheede JR; Staquet S; Merlevede W
    Mol Cell Biochem; 1989 May; 87(1):31-9. PubMed ID: 2549391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of bovine heart ATP-MG2+-dependent phosphoprotein phosphatase: isolation of a phosphoenzyme intermediate and its conversion to the active form via a Mg2+-dependent autodephosphorylation reaction.
    Price DJ; Li HC
    Biochem Biophys Res Commun; 1985 May; 128(3):1203-10. PubMed ID: 2988531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A.
    Guo H; Damuni Z
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2500-4. PubMed ID: 7681598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the modulator protein in the interconversion of rabbit skeletal muscle protein phosphatase.
    Vandenheede JR; Yang SD; Merlevede W
    Biochem Biophys Res Commun; 1983 Sep; 115(3):871-7. PubMed ID: 6313000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase.
    Ahn NG; Seger R; Bratlien RL; Diltz CD; Tonks NK; Krebs EG
    J Biol Chem; 1991 Mar; 266(7):4220-7. PubMed ID: 1705548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.