These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 24331712)

  • 1. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells.
    Cheung HK; Han TT; Marecak DM; Watkins JF; Amsden BG; Flynn LE
    Biomaterials; 2014 Feb; 35(6):1914-23. PubMed ID: 24331712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.
    Brown CF; Yan J; Han TT; Marecak DM; Amsden BG; Flynn LE
    Biomed Mater; 2015 Jul; 10(4):045010. PubMed ID: 26225549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells.
    Turner AE; Yu C; Bianco J; Watkins JF; Flynn LE
    Biomaterials; 2012 Jun; 33(18):4490-9. PubMed ID: 22456084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells.
    Flynn L; Prestwich GD; Semple JL; Woodhouse KA
    Biomaterials; 2007 Sep; 28(26):3834-42. PubMed ID: 17544502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous decellularized adipose tissue foams for soft tissue regeneration.
    Yu C; Bianco J; Brown C; Fuetterer L; Watkins JF; Samani A; Flynn LE
    Biomaterials; 2013 Apr; 34(13):3290-302. PubMed ID: 23384795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells.
    Flynn LE
    Biomaterials; 2010 Jun; 31(17):4715-24. PubMed ID: 20304481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.
    Han TT; Toutounji S; Amsden BG; Flynn LE
    Biomaterials; 2015 Dec; 72():125-37. PubMed ID: 26360790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion.
    Yu C; Kornmuller A; Brown C; Hoare T; Flynn LE
    Biomaterials; 2017 Mar; 120():66-80. PubMed ID: 28038353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite Bioscaffolds Incorporating Decellularized ECM as a Cell-Instructive Component Within Hydrogels as In Vitro Models and Cell Delivery Systems.
    Shridhar A; Gillies E; Amsden BG; Flynn LE
    Methods Mol Biol; 2018; 1577():183-208. PubMed ID: 28493212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization.
    Kayabolen A; Keskin D; Aykan A; Karslıoglu Y; Zor F; Tezcaner A
    Biomed Mater; 2017 Jun; 12(3):035007. PubMed ID: 28361795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds.
    Flynn L; Prestwich GD; Semple JL; Woodhouse KA
    J Biomed Mater Res A; 2009 Jun; 89(4):929-41. PubMed ID: 18465826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Adipose tissue engineering with human adipose-derived stem cells and fibrin glue injectable scaffold].
    Zhang YS; Gao JH; Lu F; Zhu M
    Zhonghua Yi Xue Za Zhi; 2008 Oct; 88(38):2705-9. PubMed ID: 19080693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds.
    Flynn LE; Prestwich GD; Semple JL; Woodhouse KA
    Biomaterials; 2008 Apr; 29(12):1862-71. PubMed ID: 18242690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental study of adipose tissue differentiation using adipose-derived stem cells harvested from GFP transgenic mice].
    Lu F; Gao JH; Mizuro H; Ogawa R; Hyakusoku H
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2007 Sep; 23(5):412-6. PubMed ID: 18161358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds.
    Shridhar A; Amsden BG; Gillies ER; Flynn LE
    Front Bioeng Biotechnol; 2019; 7():402. PubMed ID: 31921807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preliminary comparison study of adipogenic differentiation capacity between dedifferentiated adipocytes cells and adipose-derived stem cells in vivo].
    Chen XW; Jiang P; Gao JH; Liao YJ; Lu F
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2010 Sep; 26(5):372-7. PubMed ID: 21174796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-modified methacrylated glycol chitosan hydrogels as a cell-viability supporting pro-angiogenic cell delivery platform for human adipose-derived stem/stromal cells.
    Dhillon J; Young SA; Sherman SE; Bell GI; Amsden BG; Hess DA; Flynn LE
    J Biomed Mater Res A; 2019 Mar; 107(3):571-585. PubMed ID: 30390406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle.
    Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE
    Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids.
    Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J
    Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretory factors from rat adipose tissue explants promote adipogenesis and angiogenesis.
    Li J; Qiao X; Yu M; Li F; Wang H; Guo W; Tian W
    Artif Organs; 2014 Feb; 38(2):E33-45. PubMed ID: 24020992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.