These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 2433186)
1. Inhibition of Na+-Ca2+ exchange by calcium antagonists in rat brain microsomal membranes. Ruscák M; Juhász O; Orlický J; Zachar J Gen Physiol Biophys; 1986 Oct; 5(5):529-35. PubMed ID: 2433186 [TBL] [Abstract][Full Text] [Related]
2. Na+-Ca2+ exchange in rat brain microsomal membranes pretreated with pronase and/or SDS. Ruscák M; Orlický J; Juhász O; Zachar J Gen Physiol Biophys; 1985 Jun; 4(3):249-56. PubMed ID: 2411632 [TBL] [Abstract][Full Text] [Related]
3. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. Carvalho CA; Coutinho OP; Carvalho AP J Neurochem; 1986 Dec; 47(6):1774-84. PubMed ID: 2430061 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of calcium channel inhibition by phenytoin: comparison with classical calcium channel antagonists. Messing RO; Carpenter CL; Greenberg DA J Pharmacol Exp Ther; 1985 Nov; 235(2):407-11. PubMed ID: 2414431 [TBL] [Abstract][Full Text] [Related]
5. Role of sodium-calcium exchange and effects of calcium entry blockers on endothelial-mediated responses in rat isolated aorta. Schoeffter P; Miller RC Mol Pharmacol; 1986 Jul; 30(1):53-7. PubMed ID: 3014308 [TBL] [Abstract][Full Text] [Related]
6. Direct inhibition of 5-hydroxytryptamine3 receptors by antagonists of L-type Ca2+ channels. Hargreaves AC; Gunthorpe MJ; Taylor CW; Lummis SC Mol Pharmacol; 1996 Nov; 50(5):1284-94. PubMed ID: 8913360 [TBL] [Abstract][Full Text] [Related]
7. Voltage-dependent calcium channels in the rat retina: involvement in NMDA-stimulated influx of calcium. Melena J; Osborne NN Exp Eye Res; 2001 Apr; 72(4):393-401. PubMed ID: 11273667 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of ion currents in membrane of sensory neuron by the antiarrhythmic drug BK 129 and selected Ca2+ entry blockers. Stolc S Gen Physiol Biophys; 1993 Dec; 12(6):517-31. PubMed ID: 8070644 [TBL] [Abstract][Full Text] [Related]
9. Molecular pharmacology of the calcium channel: evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4-dihydropyridine calcium channel label, [125I]iodipine. Glossmann H; Ferry DR; Goll A; Rombusch M J Cardiovasc Pharmacol; 1984; 6 Suppl 4():S608-21. PubMed ID: 6083403 [TBL] [Abstract][Full Text] [Related]
10. Effects of sulfhydryl reagents on Na+-Ca2+ exchange in rat brain microsomal membranes. Orlický J; Ruscák M; Juhász O; Zachar J Gen Physiol Biophys; 1987 Apr; 6(2):155-62. PubMed ID: 3653680 [TBL] [Abstract][Full Text] [Related]
11. Do calcium antagonists act directly on calcium channels to alter baroreceptor function? Kunze DL; Andresen MC; Torres LA J Pharmacol Exp Ther; 1986 Nov; 239(2):303-10. PubMed ID: 2430091 [TBL] [Abstract][Full Text] [Related]
12. Pharmacologic differentiation between inositol-1,4,5-trisphosphate-induced Ca2+ release and Ca2+- or caffeine-induced Ca2+ release from intracellular membrane systems. Palade P; Dettbarn C; Alderson B; Volpe P Mol Pharmacol; 1989 Oct; 36(4):673-80. PubMed ID: 2554117 [TBL] [Abstract][Full Text] [Related]
13. Modification of cardiac sarcolemmal Na+-Ca2+ exchange by diltiazem and verapamil. Takeo S; Elimban V; Dhalla NS Can J Cardiol; 1985 Mar; 1(2):131-8. PubMed ID: 2996725 [TBL] [Abstract][Full Text] [Related]
14. Effects of diltiazem or verapamil on calcium uptake and release from chicken skeletal muscle sarcoplasmic reticulum. Paydar MJ; Pousti A; Farsam H; Amanlou M; Mehr SE; Dehpour AR Can J Physiol Pharmacol; 2005 Nov; 83(11):967-75. PubMed ID: 16391705 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of the blockade of calcium-dependent action potentials by verapamil, nifedipine and nimodipine in ventricular muscle. Hachisu M; Pappano AJ J Pharmacol Exp Ther; 1983 Apr; 225(1):112-20. PubMed ID: 6834265 [TBL] [Abstract][Full Text] [Related]
16. Allosteric modulation by diltiazem and verapamil of [3H]nitrendipine binding to calcium channel sites in rat brain. Schoemaker H; Boles RG; Roeske WR; Yamamura HI Proc West Pharmacol Soc; 1983; 26():219-24. PubMed ID: 6310626 [No Abstract] [Full Text] [Related]
17. Na+-Ca2+ exchange in plasma membranes of crayfish striated muscle. Ruscák M; Orlický J; Juhászová M; Zachar J Gen Physiol Biophys; 1987 Oct; 6(5):469-78. PubMed ID: 3428566 [TBL] [Abstract][Full Text] [Related]
18. [Active calcium and sodium transport by cardiac plasma membranes in the genetically hypertensive rat]. David-Dufilho M; Cirillo M; Beugras JP; Meyer P; Devynck MA Arch Mal Coeur Vaiss; 1984 Oct; 77(11):1261-5. PubMed ID: 6098237 [TBL] [Abstract][Full Text] [Related]
19. Modulation of ATP-dependent calcium extrusion and Na+/Ca2+ exchange across rat cardiac sarcolemma by calcium antagonists. Van Amsterdam FT; Zaagsma J Eur J Pharmacol; 1986 Apr; 123(3):441-9. PubMed ID: 3720828 [TBL] [Abstract][Full Text] [Related]
20. Effects of calcium channel blockers on calcium release-activated calcium currents in rat hepatocytes. Cui GY; Li JM; Cui H; Hao LY; Liu DJ; Zhang KY Zhongguo Yao Li Xue Bao; 1999 May; 20(5):415-8. PubMed ID: 10678087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]