BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24331874)

  • 21. Experimental study of viscosity modification coupled with phase transfer catalysis for enhanced remediation of non-aqueous phase trichloroethene polluted heterogeneous aquifer.
    Zhang M; Dong J; Sun M; Jiang D; Sun C; Li X; Offiong NO
    J Hazard Mater; 2022 May; 430():128452. PubMed ID: 35168099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Feb; 68(3-4):269-87. PubMed ID: 14734249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE).
    Poulson SR; Naraoka H
    Environ Sci Technol; 2002 Aug; 36(15):3270-4. PubMed ID: 12188352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.
    Hort RD; Revil A; Munakata-Marr J
    J Contam Hydrol; 2014 Sep; 165():11-23. PubMed ID: 25064184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using slow-release permanganate candles to remediate PAH-contaminated water.
    Rauscher L; Sakulthaew C; Comfort S
    J Hazard Mater; 2012 Nov; 241-242():441-9. PubMed ID: 23089061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation?
    Lemaire J; Croze V; Maier J; Simonnot MO
    Chemosphere; 2011 Aug; 84(9):1181-7. PubMed ID: 21733544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison study of the start-up of a MnO
    Cheng Y; Li Y; Huang T; Sun Y; Shi X; Shao Y
    J Environ Sci (China); 2018 Mar; 65():327-334. PubMed ID: 29548404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-silica coated with amorphous manganese oxide as an efficient catalyst for rapid degradation of organic pollutant.
    Dang TD; Banerjee AN; Cheney MA; Qian S; Joo SW; Min BK
    Colloids Surf B Biointerfaces; 2013 Jun; 106():151-7. PubMed ID: 23434705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of PFOA in groundwater by Fe
    Liu J; Weinholtz L; Zheng L; Peiravi M; Wu Y; Chen D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1048-1054. PubMed ID: 28738170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bias by the inappropriate use of the pseudo-first order approach to estimate second-order reaction rate constants: reply to the commentary by Tratnyek (this issue).
    Hartog N; Mahmoodlu MG; Hassanizadeh SM
    Sci Total Environ; 2015 Jan; 502():724-5. PubMed ID: 25300583
    [No Abstract]   [Full Text] [Related]  

  • 32. To postpone the precipitation of manganese oxides in the degradation of tetrachloroethylene by controlling the permanganate concentration.
    Yang W; Qiu Z; Zhao Z; Lu S; Sui Q; Gu X
    Environ Technol; 2017 Jan; 38(1):34-41. PubMed ID: 27149929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns.
    McKenzie ER; Siegrist RL; McCray JE; Higgins CP
    Environ Sci Technol; 2015 Feb; 49(3):1681-9. PubMed ID: 25621878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements.
    Christenson M; Kambhu A; Reece J; Comfort S; Brunner L
    Chemosphere; 2016 May; 150():239-247. PubMed ID: 26901481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.
    Pham AL; Doyle FM; Sedlak DL
    Water Res; 2012 Dec; 46(19):6454-62. PubMed ID: 23047055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.
    Piscopo AN; Neupauer RM; Kasprzyk JR
    J Contam Hydrol; 2016 Jul; 190():29-43. PubMed ID: 27153361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation.
    Pham AL; Doyle FM; Sedlak DL
    Environ Sci Technol; 2012 Jan; 46(2):1055-62. PubMed ID: 22129132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Could manganate be an alternative of permanganate for micropollutant abatement?
    Zhang Y; Sun B; Rao D; Zhang J; Liang S
    Chemosphere; 2023 Apr; 321():138094. PubMed ID: 36758814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of contaminant degradation by permanganate.
    Waldemer RH; Tratnyek PG
    Environ Sci Technol; 2006 Feb; 40(3):1055-61. PubMed ID: 16509357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.