These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 24332213)
1. (+)-Pisatin biosynthesis: from (-) enantiomeric intermediates via an achiral 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene. Celoy RM; VanEtten HD Phytochemistry; 2014 Feb; 98():120-7. PubMed ID: 24332213 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Kaimoyo E; VanEtten HD Phytochemistry; 2008 Jan; 69(1):76-87. PubMed ID: 17707445 [TBL] [Abstract][Full Text] [Related]
3. Studies on the late steps of (+) pisatin biosynthesis: evidence for (-) enantiomeric intermediates. DiCenzo GL; VanEtten HD Phytochemistry; 2006 Apr; 67(7):675-83. PubMed ID: 16504226 [TBL] [Abstract][Full Text] [Related]
4. Dirigent isoflavene-forming PsPTS2: 3D structure, stereochemical, and kinetic characterization comparison with pterocarpan-forming PsPTS1 homolog in pea. Meng Q; Moinuddin SGA; Celoy RM; Smith CA; Young RP; Costa MA; Freeman RA; Fukaya M; Kim DN; Cort JR; Hawes MC; van Etten HD; Pandey P; Chittiboyina AG; Ferreira D; Davin LB; Lewis NG J Biol Chem; 2024 Mar; 300(3):105647. PubMed ID: 38219818 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis. Paiva NL; Sun Y; Dixon RA; VanEtten HD; Hrazdina G Arch Biochem Biophys; 1994 Aug; 312(2):501-10. PubMed ID: 8037464 [TBL] [Abstract][Full Text] [Related]
6. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Wu Q; VanEtten HD Mol Plant Microbe Interact; 2004 Jul; 17(7):798-804. PubMed ID: 15242174 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of the Phytoalexin Pisatin : Isoflavone Reduction and Further Metabolism of the Product Sophorol by Extracts of Pisum sativum. Preisig CL; Bell JN; Sun Y; Hrazdina G; Matthews DE; Vanetten HD Plant Physiol; 1990 Nov; 94(3):1444-8. PubMed ID: 16667851 [TBL] [Abstract][Full Text] [Related]
8. Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis. Akashi T; VanEtten HD; Sawada Y; Wasmann CC; Uchiyama H; Ayabe S Phytochemistry; 2006 Dec; 67(23):2525-30. PubMed ID: 17067644 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and biochemical characterization of isoflav-3-ene synthase, a key enzyme of the biosyntheses of (+)-pisatin and coumestrol. Uchida K; Aoki T; Suzuki H; Akashi T Plant Biotechnol (Tokyo); 2020 Sep; 37(3):301-310. PubMed ID: 33088193 [TBL] [Abstract][Full Text] [Related]
10. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Kaimoyo E; Farag MA; Sumner LW; Wasmann C; Cuello JL; VanEtten H Biotechnol Prog; 2008; 24(2):377-84. PubMed ID: 18331050 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Liu CJ; Deavours BE; Richard SB; Ferrer JL; Blount JW; Huhman D; Dixon RA; Noel JP Plant Cell; 2006 Dec; 18(12):3656-69. PubMed ID: 17172354 [TBL] [Abstract][Full Text] [Related]
12. LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Arman M Nat Prod Res; 2011 Aug; 25(14):1352-60. PubMed ID: 21859260 [TBL] [Abstract][Full Text] [Related]
13. Isolation and identification of an allelopathic substance in Pisum sativum. Kato-Noguchi H Phytochemistry; 2003 Apr; 62(7):1141-4. PubMed ID: 12591269 [TBL] [Abstract][Full Text] [Related]
14. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Wu Q; Preisig CL; VanEtten HD Plant Mol Biol; 1997 Nov; 35(5):551-60. PubMed ID: 9349277 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of the phytoalexin pisatin by a methyltransferase from pea. Sweigard JA; Matthews DE; Vanetten HD Plant Physiol; 1986 Jan; 80(1):277-9. PubMed ID: 16664598 [TBL] [Abstract][Full Text] [Related]
16. Induction of 6a-hydroxymaackiain 3-O-methyltransferase and phenylalanine ammonia-lyase mRNA translational activities during the biosynthesis of pisatin. Preisig CL; VanEtten HD; Moreau RA Arch Biochem Biophys; 1991 Nov; 290(2):468-73. PubMed ID: 1929414 [TBL] [Abstract][Full Text] [Related]
17. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization. Seneviratne HK; Dalisay DS; Kim KW; Moinuddin SG; Yang H; Hartshorn CM; Davin LB; Lewis NG Phytochemistry; 2015 May; 113():140-8. PubMed ID: 25457488 [TBL] [Abstract][Full Text] [Related]
18. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas. Hadwiger LA; Tanaka K Molecules; 2014 Dec; 20(1):24-34. PubMed ID: 25546618 [TBL] [Abstract][Full Text] [Related]
19. Role of oxygenases in pisatin biosynthesis and in the fungal degradation of maackiain. Matthews DE; Weiner EJ; Matthews PS; Vanetten HD Plant Physiol; 1987 Feb; 83(2):365-70. PubMed ID: 16665251 [TBL] [Abstract][Full Text] [Related]
20. Characterization of pisatin-inducible cytochrome p450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. George HL; VanEtten HD Fungal Genet Biol; 2001 Jun; 33(1):37-48. PubMed ID: 11407884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]