These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24332878)

  • 1. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.
    Galea R; Ross C; Wells RG
    Appl Radiat Isot; 2014 May; 87():148-51. PubMed ID: 24332878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative production methods to face global molybdenum-99 supply shortage.
    Lyra M; Charalambatou P; Roussou E; Fytros S; Baka I
    Hell J Nucl Med; 2011; 14(1):49-55. PubMed ID: 21512666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons from the Tc-99m shortage: implications of substituting Tl-201 for Tc-99m single-photon emission computed tomography.
    Small GR; Ruddy TD; Simion O; Alam M; Fuller L; Chen L; Beanlands RS; Chow BJ
    Circ Cardiovasc Imaging; 2013 Sep; 6(5):683-91. PubMed ID: 23873401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Questionnaire survey of hospitals in Saitama Prefecture regarding the shortage of 99mTc-labeled radiopharmaceuticals and 99Mo/99mTc generators.
    Kosuda S; Tomita H; Hayashi K; Kita T; Koike K; Arai T
    Ann Nucl Med; 2010 May; 24(4):319-23. PubMed ID: 20204551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Ways to Address Shortage Situations of
    Filzen LM; Ellingson LR; Paulsen AM; Hung JC
    J Nucl Med Technol; 2017 Mar; 45(1):1-5. PubMed ID: 28154015
    [No Abstract]   [Full Text] [Related]  

  • 6. Implementation of Multi-Curie Production of (99m)Tc by Conventional Medical Cyclotrons.
    Bénard F; Buckley KR; Ruth TJ; Zeisler SK; Klug J; Hanemaayer V; Vuckovic M; Hou X; Celler A; Appiah JP; Valliant J; Kovacs MS; Schaffer P
    J Nucl Med; 2014 Jun; 55(6):1017-22. PubMed ID: 24722529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained availability of 99mTc: possible paths forward.
    Pillai MR; Dash A; Knapp FF
    J Nucl Med; 2013 Feb; 54(2):313-23. PubMed ID: 23255729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.
    Morreale AC; Novog DR; Luxat JC
    Appl Radiat Isot; 2012 Jan; 70(1):20-34. PubMed ID: 21816619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility studies towards future self-sufficient supply of the (99)Mo-(99m)Tc isotopes with Japanese accelerators.
    Nakai K; Takahashi N; Hatazawa J; Shinohara A; Hayashi Y; Ikeda H; Kanai Y; Watabe T; Fukuda M; Hatanaka K
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(10):413-21. PubMed ID: 25504230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.
    Pillai MR; Dash A; Knapp FF
    J Nucl Med; 2015 Jan; 56(1):159-61. PubMed ID: 25537991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fission-Produced
    Youker AJ; Chemerisov SD; Tkac P; Kalensky M; Heltemes TA; Rotsch DA; Vandegrift GF; Krebs JF; Makarashvili V; Stepinski DC
    J Nucl Med; 2017 Mar; 58(3):514-517. PubMed ID: 27688474
    [No Abstract]   [Full Text] [Related]  

  • 12. Canadian NRU extended; medical isotope partnership announced.
    J Nucl Med; 2015 Apr; 56(4):9N. PubMed ID: 25834180
    [No Abstract]   [Full Text] [Related]  

  • 13. Technetium-99m -- new production and processing strategies to provide adequate levels for SPECT imaging.
    Osso JA; Catanoso MF; Barrio G; Brambilla TP; Teodoro R; Dias CR; Suzuki KN
    Curr Radiopharm; 2012 Jul; 5(3):178-86. PubMed ID: 22642387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets.
    Celler A; Hou X; Bénard F; Ruth T
    Phys Med Biol; 2011 Sep; 56(17):5469-84. PubMed ID: 21813960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated module for the separation and purification of cyclotron-produced 99mTcO4-.
    Morley TJ; Dodd M; Gagnon K; Hanemaayer V; Wilson J; McQuarrie SA; English W; Ruth TJ; Bénard F; Schaffer P
    Nucl Med Biol; 2012 May; 39(4):551-9. PubMed ID: 22226026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets.
    Gagnon K; Wilson JS; Holt CM; Abrams DN; McEwan AJ; Mitlin D; McQuarrie SA
    Appl Radiat Isot; 2012 Aug; 70(8):1685-90. PubMed ID: 22750197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.
    Hou X; Tanguay J; Buckley K; Schaffer P; Bénard F; Ruth TJ; Celler A
    Phys Med Biol; 2016 Jan; 61(2):542-53. PubMed ID: 26683410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and rapid technique for recovery of (99m)Tc from low specific activity (n,gamma)(99)Mo based on solvent extraction and column chromatography.
    Chattopadhyay S; Das SS; Barua L
    Appl Radiat Isot; 2010 Jan; 68(1):1-4. PubMed ID: 19720541
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.