BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24332968)

  • 1. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells.
    Tornovsky-Babeay S; Dadon D; Ziv O; Tzipilevich E; Kadosh T; Schyr-Ben Haroush R; Hija A; Stolovich-Rain M; Furth-Lavi J; Granot Z; Porat S; Philipson LH; Herold KC; Bhatti TR; Stanley C; Ashcroft FM; In't Veld P; Saada A; Magnuson MA; Glaser B; Dor Y
    Cell Metab; 2014 Jan; 19(1):109-21. PubMed ID: 24332968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism: DNA double-strand breaks and p53 activity in β-cell failure.
    Koch L
    Nat Rev Endocrinol; 2014 Mar; 10(3):126. PubMed ID: 24366124
    [No Abstract]   [Full Text] [Related]  

  • 3. Biphasic dynamics of beta cell mass in a mouse model of congenital hyperinsulinism: implications for type 2 diabetes.
    Tornovsky-Babeay S; Weinberg-Corem N; Ben-Haroush Schyr R; Avrahami D; Lavi J; Feleke E; Kaestner KH; Dor Y; Glaser B
    Diabetologia; 2021 May; 64(5):1133-1143. PubMed ID: 33558985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes.
    Lu M; Li C
    Ann N Y Acad Sci; 2018 Jan; 1411(1):65-82. PubMed ID: 29044608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic β-cells through the association of Epac2 with Rim2 and Rab3A.
    Park JH; Kim SJ; Park SH; Son DG; Bae JH; Kim HK; Han J; Song DK
    Endocrinology; 2012 Feb; 153(2):574-82. PubMed ID: 22147008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A report of 2 new cases of MODY2 and review of the literature: implications in the search for type 2 diabetes drugs.
    Shammas C; Neocleous V; Phelan MM; Lian LY; Skordis N; Phylactou LA
    Metabolism; 2013 Nov; 62(11):1535-42. PubMed ID: 23890519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in pancreatic ß-cell Glucokinase as a cause of hyperinsulinaemic hypoglycaemia and neonatal diabetes mellitus.
    Hussain K
    Rev Endocr Metab Disord; 2010 Sep; 11(3):179-83. PubMed ID: 20878480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism.
    Lin YW; Bushman JD; Yan FF; Haidar S; MacMullen C; Ganguly A; Stanley CA; Shyng SL
    J Biol Chem; 2008 Apr; 283(14):9146-56. PubMed ID: 18250167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic beta cells.
    Ding SY; Nkobena A; Kraft CA; Markwardt ML; Rizzo MA
    J Biol Chem; 2011 May; 286(19):16768-74. PubMed ID: 21454584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.
    Chen PC; Olson EM; Zhou Q; Kryukova Y; Sampson HM; Thomas DY; Shyng SL
    J Biol Chem; 2013 Jul; 288(29):20942-20954. PubMed ID: 23744072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Reduction of Glucose Metabolism Preserves Functional β-Cell Mass in KATP-Induced Neonatal Diabetes.
    Yan Z; Fortunato M; Shyr ZA; Clark AL; Fuess M; Nichols CG; Remedi MS
    Diabetes; 2022 Jun; 71(6):1233-1245. PubMed ID: 35294000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liraglutide, a human glucagon-like peptide-1 analogue, stimulates AKT-dependent survival signalling and inhibits pancreatic β-cell apoptosis.
    Kapodistria K; Tsilibary EP; Kotsopoulou E; Moustardas P; Kitsiou P
    J Cell Mol Med; 2018 Jun; 22(6):2970-2980. PubMed ID: 29524296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Origins of Enzyme Activation in Human Glucokinase Variants Associated with Congenital Hyperinsulinism.
    Sternisha SM; Liu P; Marshall AG; Miller BG
    Biochemistry; 2018 Mar; 57(10):1632-1639. PubMed ID: 29425029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-cell failure in diabetes and preservation by clinical treatment.
    Wajchenberg BL
    Endocr Rev; 2007 Apr; 28(2):187-218. PubMed ID: 17353295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipeptidyl peptidase-4 inhibitor anagliptin ameliorates diabetes in mice with haploinsufficiency of glucokinase on a high-fat diet.
    Nakaya K; Kubota N; Takamoto I; Kubota T; Katsuyama H; Sato H; Tokuyama K; Hashimoto S; Goto M; Jomori T; Ueki K; Kadowaki T
    Metabolism; 2013 Jul; 62(7):939-51. PubMed ID: 23790528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From congenital hyperinsulinism to diabetes mellitus: the role of pancreatic beta-cell KATP channels.
    Hussain K; Cosgrove KE
    Pediatr Diabetes; 2005 Jun; 6(2):103-13. PubMed ID: 15963039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective ablation of P53 in pancreatic beta cells fails to ameliorate glucose metabolism in genetic, dietary and pharmacological models of diabetes mellitus.
    Uhlemeyer C; Müller N; Rieck M; Kuboth J; Schlegel C; Grieß K; Dorweiler TF; Heiduschka S; Eckel J; Roden M; Lammert E; Stoffel M; Belgardt BF
    Mol Metab; 2023 Jan; 67():101650. PubMed ID: 36470401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis.
    Kumar DP; Asgharpour A; Mirshahi F; Park SH; Liu S; Imai Y; Nadler JL; Grider JR; Murthy KS; Sanyal AJ
    J Biol Chem; 2016 Mar; 291(13):6626-40. PubMed ID: 26757816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased β cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes.
    Shirakawa J; Amo K; Ohminami H; Orime K; Togashi Y; Ito Y; Tajima K; Koganei M; Sasaki H; Takeda E; Terauchi Y
    J Biol Chem; 2011 Jul; 286(29):25467-76. PubMed ID: 21613229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global gene expression profiling of pancreatic islets in mice during streptozotocin-induced β-cell damage and pancreatic Glp-1 gene therapy.
    Tonne JM; Sakuma T; Deeds MC; Munoz-Gomez M; Barry MA; Kudva YC; Ikeda Y
    Dis Model Mech; 2013 Sep; 6(5):1236-45. PubMed ID: 23828045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.