These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24333255)

  • 41. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application.
    S S; H LJK; K R; M S
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():581-589. PubMed ID: 28629056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress.
    Trevisan R; Delapedra G; Mello DF; Arl M; Schmidt ÉC; Meder F; Monopoli M; Cargnin-Ferreira E; Bouzon ZL; Fisher AS; Sheehan D; Dafre AL
    Aquat Toxicol; 2014 Aug; 153():27-38. PubMed ID: 24745718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Juggling cadmium detoxification and zinc homeostasis: A division of labour between the two C. elegans metallothioneins.
    Essig YJ; Leszczyszyn OI; Almutairi N; Harrison-Smith A; Blease A; Zeitoun-Ghandour S; Webb SM; Blindauer CA; Stürzenbaum SR
    Chemosphere; 2024 Feb; 350():141021. PubMed ID: 38151062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lonicera japonica extends lifespan and healthspan in Caenorhabditis elegans.
    Yang ZZ; Yu YT; Lin HR; Liao DC; Cui XH; Wang HB
    Free Radic Biol Med; 2018 Dec; 129():310-322. PubMed ID: 30266681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine.
    Proniewicz E; Tąta A; Wójcik A; Starowicz M; Pacek J; Molenda M
    Phys Chem Chem Phys; 2020 Dec; 22(48):28100-28114. PubMed ID: 33289732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stage-specific exposure of Caenorhabditis elegans to cadmium identifies unique transcriptomic response cascades and an uncharacterized cadmium responsive transcript.
    Almutairi N; Khan N; Harrison-Smith A; Arlt VM; Stürzenbaum SR
    Metallomics; 2024 May; 16(5):. PubMed ID: 38549424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.
    Panda KK; Golari D; Venugopal A; Achary VMM; Phaomei G; Parinandi NL; Sahu HK; Panda BB
    Antioxidants (Basel); 2017 May; 6(2):. PubMed ID: 28524089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles.
    Gopalakrishnan Nair PM; Chung IM
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Dec; 190():1-7. PubMed ID: 26278375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure.
    Brulle F; Cocquerelle C; Wamalah AN; Morgan AJ; Kille P; Leprêtre A; Vandenbulcke F
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):47-55. PubMed ID: 18083232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans.
    Li D; Ji J; Yuan Y; Wang D
    Chemosphere; 2020 Apr; 245():125625. PubMed ID: 31855754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination.
    Ma H; Glenn TC; Jagoe CH; Jones KL; Williams PL
    Environ Toxicol Chem; 2009 Jun; 28(6):1311-8. PubMed ID: 19175297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium.
    Franchi N; Piccinni E; Ferro D; Basso G; Spolaore B; Santovito G; Ballarin L
    Aquat Toxicol; 2014 Jul; 152():47-56. PubMed ID: 24727215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles.
    Hsiao IL; Huang YJ
    Chem Res Toxicol; 2011 Mar; 24(3):303-13. PubMed ID: 21341804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.
    Król A; Pomastowski P; Rafińska K; Railean-Plugaru V; Buszewski B
    Adv Colloid Interface Sci; 2017 Nov; 249():37-52. PubMed ID: 28923702
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli.
    Dutta RK; Nenavathu BP; Gangishetty MK; Reddy AV
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):871-8. PubMed ID: 23485236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution.
    Adam N; Schmitt C; Galceran J; Companys E; Vakurov A; Wallace R; Knapen D; Blust R
    Nanotoxicology; 2014 Nov; 8(7):709-17. PubMed ID: 23837602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper and zinc differentially affect root glutathione accumulation and phytochelatin synthase gene expression of Rhizophora mucronata seedlings: Implications for mechanisms underlying trace metal tolerance.
    Nualla-Ong A; Phongdara A; Buapet P
    Ecotoxicol Environ Saf; 2020 Dec; 205():111175. PubMed ID: 32836161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine.
    Singh G; Babele PK; Kumar A; Srivastava A; Sinha RP; Tyagi MB
    J Photochem Photobiol B; 2014 Sep; 138():55-62. PubMed ID: 24911272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genotoxic effects of zinc oxide nanoparticles.
    Heim J; Felder E; Tahir MN; Kaltbeitzel A; Heinrich UR; Brochhausen C; Mailänder V; Tremel W; Brieger J
    Nanoscale; 2015 May; 7(19):8931-8. PubMed ID: 25916659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative effects of chemical and green zinc oxide nanoparticles in caprine testis: ultrastructural and steroidogenic enzyme analysis.
    Bareja S; Sharma RK
    Ultrastruct Pathol; 2024 Jan; 48(1):42-55. PubMed ID: 38085153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.