BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24333274)

  • 1. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport.
    Shiue E; Prather KL
    Metab Eng; 2014 Mar; 22():22-31. PubMed ID: 24333274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae.
    Marques WL; Anderson LA; Sandoval L; Hicks MA; Prather KLJ
    Enzyme Microb Technol; 2020 Oct; 140():109623. PubMed ID: 32912683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of glucaric acid from myo-inositol in engineered Pichia pastoris.
    Liu Y; Gong X; Wang C; Du G; Chen J; Kang Z
    Enzyme Microb Technol; 2016 Sep; 91():8-16. PubMed ID: 27444324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae.
    Gupta A; Hicks MA; Manchester SP; Prather KL
    Biotechnol J; 2016 Sep; 11(9):1201-8. PubMed ID: 27312887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing glucaric acid production from
    Ding N; Sun L; Zhou X; Zhang L; Deng Y; Yin L
    Appl Environ Microbiol; 2024 Jun; 90(6):e0014924. PubMed ID: 38808978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
    Moon TS; Yoon SH; Lanza AM; Roy-Mayhew JD; Prather KL
    Appl Environ Microbiol; 2009 Feb; 75(3):589-95. PubMed ID: 19060162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.
    Moon TS; Dueber JE; Shiue E; Prather KL
    Metab Eng; 2010 May; 12(3):298-305. PubMed ID: 20117231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid.
    Su HH; Peng F; Ou XY; Zeng YJ; Zong MH; Lou WY
    N Biotechnol; 2020 Nov; 59():51-58. PubMed ID: 32693027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of d-glucuronic acid from myo-inositol using Escherichia coli whole-cell biocatalyst overexpressing a novel myo-inositol oxygenase from Thermothelomyces thermophile.
    Teng F; You R; Hu M; Liu W; Wang L; Tao Y
    Enzyme Microb Technol; 2019 Aug; 127():70-74. PubMed ID: 31088620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Construction of a glucaric acid biosensor for screening myo-inositol oxygenase variants].
    Wang C; Liu Y; Gong X; Liu L; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2018 Nov; 34(11):1772-1783. PubMed ID: 30499273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Metabolic engineering of Saccharomyces cerevisiae for production of glucaric acid].
    Gong X; Liu Y; Wang C; Li J; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):228-236. PubMed ID: 28956379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer.
    Chen N; Wang J; Zhao Y; Deng Y
    Microb Cell Fact; 2018 May; 17(1):67. PubMed ID: 29729665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae.
    Toivari M; Vehkomäki ML; Ruohonen L; Penttilä M; Wiebe MG
    Biotechnol Lett; 2024 Feb; 46(1):69-83. PubMed ID: 38064042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Engineering
    Li J; Zhao Y; Deng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):705-718. PubMed ID: 35234392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants.
    Alok A; Singh S; Kumar P; Bhati KK
    Mol Biol Rep; 2022 Aug; 49(8):8025-8035. PubMed ID: 35294703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot two-strain system based on glucaric acid biosensor for rapid screening of myo-inositol oxygenase mutations and glucaric acid production in recombinant cells.
    Zheng S; Hou J; Zhou Y; Fang H; Wang TT; Liu F; Wang FS; Sheng JZ
    Metab Eng; 2018 Sep; 49():212-219. PubMed ID: 30125674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the osmotic response and function of
    Zhang F; Yu Q; Huang Y; Luo Y; Qin J; Chen L; Li E; Wang X
    Am J Physiol Cell Physiol; 2024 Apr; 326(4):C1054-C1066. PubMed ID: 38344798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol in Disease and Development: Roles of Catabolism via
    Contreras A; Jones MK; Eldon ED; Klig LS
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of magnesium ions on glucaric acid production in the engineered Saccharomyces cerevisiae.
    Zhao Y; Li J; Su R; Liu Y; Wang J; Deng Y
    J Biotechnol; 2021 May; 332():61-71. PubMed ID: 33812897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.