These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24333521)

  • 41. Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D.
    Paterlini WC; Nogueira RF
    Chemosphere; 2005 Feb; 58(8):1107-16. PubMed ID: 15664618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates.
    de Morais JL; Zamora PP
    J Hazard Mater; 2005 Aug; 123(1-3):181-6. PubMed ID: 15878233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water.
    Huanosta-Gutiérrez T; Dantas RF; Ramírez-Zamora RM; Esplugas S
    J Hazard Mater; 2012 Apr; 213-214():325-30. PubMed ID: 22370201
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous determination of alachlor and atrazine in aqueous samples.
    Pirsaheb M; Fattahi N; Shamsipur M; Khodadadi T
    J Sep Sci; 2013 Feb; 36(4):684-9. PubMed ID: 23341303
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation.
    Rodrigues CS; Madeira LM; Boaventura RA
    J Hazard Mater; 2009 Dec; 172(2-3):1551-9. PubMed ID: 19729241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Treatment of diglyme containing wastewater by advanced oxidation--process design and optimisation.
    Grossmann D; Köser H; Kretschmer R; Porobin M
    Water Sci Technol; 2001; 44(5):287-93. PubMed ID: 11695472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor.
    Zhang H; Ran X; Wu X
    J Hazard Mater; 2012 Nov; 241-242():259-66. PubMed ID: 23069332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of the Fenton treatment of 1,4-dioxane and on-line FTIR monitoring of the reaction.
    Merayo N; Hermosilla D; Cortijo L; Blanco Á
    J Hazard Mater; 2014 Mar; 268():102-9. PubMed ID: 24473402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process.
    Benzaquén TB; Benzzo MT; Isla MA; Alfano OM
    Water Sci Technol; 2013; 67(1):210-6. PubMed ID: 23128641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Treatment of persistent organic compounds by integrated advanced oxidation processes and sequential batch reactor.
    Christensen A; Gurol MD; Garoma T
    Water Res; 2009 Sep; 43(16):3910-21. PubMed ID: 19427015
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combined oxidative and biological treatment of separated streams of tannery wastewater.
    Vidal G; Nieto J; Mansilla HD; Bornhardt C
    Water Sci Technol; 2004; 49(4):287-92. PubMed ID: 15077985
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of variables of the combined coagulation-Fenton-sedimentation process in the treatment of trifluraline effluent.
    Martins AF; Vasconcelos TG; Wilde ML
    J Hazard Mater; 2005 Dec; 127(1-3):111-9. PubMed ID: 16084015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The binary treatment of aqueous metribuzin using anodic fenton treatment and biodegradation.
    Scherer EM; Wang QQ; Hay AG; Lemley AT
    Arch Environ Contam Toxicol; 2004 Aug; 47(2):154-61. PubMed ID: 15386139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment.
    Pęziak-Kowalska D; Fourcade F; Niemczak M; Amrane A; Chrzanowski Ł; Lota G
    Environ Technol; 2017 May; 38(9):1093-1099. PubMed ID: 27553250
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment.
    Kurniawan TA; Lo WH
    Water Res; 2009 Sep; 43(16):4079-91. PubMed ID: 19695663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: effect of H2O2 dosage and temperature.
    Santos A; Yustos P; Rodriguez S; Simon E; Garcia-Ochoa F
    J Hazard Mater; 2007 Jul; 146(3):595-601. PubMed ID: 17524556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative study of UV-fenton, UV-H2O2 and fenton reaction treatment of landfill leachate.
    Hu X; Wang X; Ban Y; Ren B
    Environ Technol; 2011 Jul; 32(9-10):945-51. PubMed ID: 21882548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge.
    De la Cruz N; Giménez J; Esplugas S; Grandjean D; de Alencastro LF; Pulgarín C
    Water Res; 2012 Apr; 46(6):1947-57. PubMed ID: 22305640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Treatment of wastewater containing acid rose red dye by biologically aerated filter after chemical oxidation.
    Wang X; Gu X; Zhou X; Wang W; Lin D
    Environ Technol; 2007 Aug; 28(8):831-9. PubMed ID: 17879842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The dose and ratio effects of Fe(II) and H2O2 in Fenton's process on the removal of atrazine.
    Chan KH; Chu W
    Environ Technol; 2003 Jun; 24(6):703-10. PubMed ID: 12868525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.