These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24333672)
1. Tribological properties of biocompatible Ti-10W and Ti-7.5TiC-7.5W. Choi M; Hong E; So J; Song S; Kim BS; Yamamoto A; Kim YS; Cho J; Choe H J Mech Behav Biomed Mater; 2014 Feb; 30():214-22. PubMed ID: 24333672 [TBL] [Abstract][Full Text] [Related]
2. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility. Das M; Bhattacharya K; Dittrick SA; Mandal C; Balla VK; Sampath Kumar TS; Bandyopadhyay A; Manna I J Mech Behav Biomed Mater; 2014 Jan; 29():259-71. PubMed ID: 24121827 [TBL] [Abstract][Full Text] [Related]
3. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys. da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721 [TBL] [Abstract][Full Text] [Related]
4. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications. Tkachenko S; Datskevich O; Kulak L; Jacobson S; Engqvist H; Persson C J Mech Behav Biomed Mater; 2014 Nov; 39():61-72. PubMed ID: 25105238 [TBL] [Abstract][Full Text] [Related]
5. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V. Marin E; Offoiach R; Lanzutti A; Regis M; Fusi S; Fedrizzi L Biomed Mater Eng; 2014; 24(1):581-92. PubMed ID: 24211942 [TBL] [Abstract][Full Text] [Related]
6. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy. Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946 [TBL] [Abstract][Full Text] [Related]
7. Wear behavior of tetragonal zirconia polycrystal versus titanium and titanium alloy. Kanbara T; Yajima Y; Yoshinari M Biomed Mater; 2011 Apr; 6(2):021001. PubMed ID: 21393812 [TBL] [Abstract][Full Text] [Related]
8. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts. Zhang YM; Chai F; Hornez JC; Li CL; Zhao YM; Traisnel M; Hildebrand HF Biomed Mater; 2009 Feb; 4(1):015004. PubMed ID: 18981540 [TBL] [Abstract][Full Text] [Related]
9. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
10. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications. Xie KY; Wang Y; Zhao Y; Chang L; Wang G; Chen Z; Cao Y; Liao X; Lavernia EJ; Valiev RZ; Sarrafpour B; Zoellner H; Ringer SP Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3530-6. PubMed ID: 23706243 [TBL] [Abstract][Full Text] [Related]
12. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation. Wen M; Wen C; Hodgson P; Li Y Colloids Surf B Biointerfaces; 2014 Apr; 116():658-65. PubMed ID: 24269052 [TBL] [Abstract][Full Text] [Related]
13. Cytocompatibility and electrochemical properties of Ti-Au alloys for biomedical applications. Oh KT; Kang DK; Choi GS; Kim KN J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):320-6. PubMed ID: 17385226 [TBL] [Abstract][Full Text] [Related]
14. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications. Gordin DM; Ion R; Vasilescu C; Drob SI; Cimpean A; Gloriant T Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():362-70. PubMed ID: 25280716 [TBL] [Abstract][Full Text] [Related]
16. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering. Mondal D; Nguyen L; Oh IH; Lee BT J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893 [TBL] [Abstract][Full Text] [Related]
17. Osteoblast cell behavior on the new beta-type Ti-25Ta-25Nb alloy. Cimpean A; Mitran V; Ciofrangeanu CM; Galateanu B; Bertrand E; Gordin DM; Iordachescu D; Gloriant T Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1554-63. PubMed ID: 24364960 [TBL] [Abstract][Full Text] [Related]
18. Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. Park YJ; Song YH; An JH; Song HJ; Anusavice KJ J Dent; 2013 Dec; 41(12):1251-8. PubMed ID: 24060476 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material. Wang YB; Li HF; Cheng Y; Zheng YF; Ruan LQ Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3489-97. PubMed ID: 23706238 [TBL] [Abstract][Full Text] [Related]