These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 24333698)
1. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Xu K; Xu P Bioresour Technol; 2014 Feb; 153():23-9. PubMed ID: 24333698 [TBL] [Abstract][Full Text] [Related]
2. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Flores-Albino B; Arias L; Gómez J; Castillo A; Gimeno M; Shirai K Bioprocess Biosyst Eng; 2012 Sep; 35(7):1193-200. PubMed ID: 22367529 [TBL] [Abstract][Full Text] [Related]
3. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1. Xia J; Xu Z; Xu H; Liang J; Li S; Feng X Bioresour Technol; 2014 Jul; 164():241-7. PubMed ID: 24861999 [TBL] [Abstract][Full Text] [Related]
4. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Liu YP; Zheng P; Sun ZH; Ni Y; Dong JJ; Zhu LL Bioresour Technol; 2008 Apr; 99(6):1736-42. PubMed ID: 17532626 [TBL] [Abstract][Full Text] [Related]
5. Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Meng Y; Xue Y; Yu B; Gao C; Ma Y Bioresour Technol; 2012 Jul; 116():334-9. PubMed ID: 22534372 [TBL] [Abstract][Full Text] [Related]
6. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans. Xu K; Xu P PLoS One; 2014; 9(6):e100731. PubMed ID: 24956474 [TBL] [Abstract][Full Text] [Related]
7. Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale. Karp SG; Igashiyama AH; Siqueira PF; Carvalho JC; Vandenberghe LP; Thomaz-Soccol V; Coral J; Tholozan JL; Pandey A; Soccol CR Bioresour Technol; 2011 Jan; 102(2):1765-72. PubMed ID: 20933391 [TBL] [Abstract][Full Text] [Related]
8. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150 [TBL] [Abstract][Full Text] [Related]
9. Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. Ni Y; Wang Y; Sun Z Appl Biochem Biotechnol; 2012 Apr; 166(8):1896-907. PubMed ID: 22362519 [TBL] [Abstract][Full Text] [Related]
10. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Ma K; Maeda T; You H; Shirai Y Bioresour Technol; 2014 Jan; 151():28-35. PubMed ID: 24201025 [TBL] [Abstract][Full Text] [Related]
11. Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. El-Enshasy HA; Mohamed NA; Farid MA; El-Diwany AI Bioresour Technol; 2008 Jul; 99(10):4263-8. PubMed ID: 17936622 [TBL] [Abstract][Full Text] [Related]
12. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Yan D; Lu Y; Chen YF; Wu Q Bioresour Technol; 2011 Jun; 102(11):6487-93. PubMed ID: 21474303 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related]
14. Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Zhang D; Feng X; Zhou Z; Zhang Y; Xu H Bioresour Technol; 2012 Jun; 114():583-8. PubMed ID: 22465581 [TBL] [Abstract][Full Text] [Related]
15. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Ai H; Liu M; Yu P; Zhang S; Suo Y; Luo P; Li S; Wang J Carbohydr Polym; 2015 Sep; 129():35-43. PubMed ID: 26050885 [TBL] [Abstract][Full Text] [Related]
16. Development of a Strategy for L-Lactic Acid Production by Yin FW; Sun XL; Zheng WL; Yin LF; Luo X; Zhang YY; Wang YF; Fu YQ Molecules; 2023 Aug; 28(17):. PubMed ID: 37687063 [TBL] [Abstract][Full Text] [Related]
17. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. Xia J; Xu J; Hu L; Liu X Prep Biochem Biotechnol; 2016 Nov; 46(8):798-802. PubMed ID: 26829650 [TBL] [Abstract][Full Text] [Related]
18. Enhanced production of 2,3-butanediol from sugarcane molasses. Dai JY; Zhao P; Cheng XL; Xiu ZL Appl Biochem Biotechnol; 2015 Mar; 175(6):3014-24. PubMed ID: 25586489 [TBL] [Abstract][Full Text] [Related]
19. D(-)-lactic acid production by Leuconostoc mesenteroides B512 using different carbon and nitrogen sources. Coelho LF; de Lima CJ; Bernardo MP; Contiero J Appl Biochem Biotechnol; 2011 Aug; 164(7):1160-71. PubMed ID: 21360091 [TBL] [Abstract][Full Text] [Related]
20. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Wang ZP; Wang QQ; Liu S; Liu XF; Yu XJ; Jiang YL Molecules; 2019 Mar; 24(7):. PubMed ID: 30925836 [No Abstract] [Full Text] [Related] [Next] [New Search]