These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24334095)

  • 1. IPMP 2013--a comprehensive data analysis tool for predictive microbiology.
    Huang L
    Int J Food Microbiol; 2014 Feb; 171():100-7. PubMed ID: 24334095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
    Huang L
    Int J Food Microbiol; 2017 Dec; 262():38-48. PubMed ID: 28961521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth kinetics of Escherichia coli O157:H7 in mechanically-tenderized beef.
    Huang L
    Int J Food Microbiol; 2010 May; 140(1):40-8. PubMed ID: 20347170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus).
    Tarlak F; Ozdemir M; Melikoglu M
    Int J Food Microbiol; 2018 Feb; 266():274-281. PubMed ID: 29274483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrisk Lab: An Online Freeware for Predictive Microbiology.
    Liu Y; Wang X; Liu B; Yuan S; Qin X; Dong Q
    Foodborne Pathog Dis; 2021 Aug; 18(8):607-615. PubMed ID: 34191593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the growth of Listeria monocytogenes in mold-ripened cheeses.
    Lobacz A; Kowalik J; Tarczynska A
    J Dairy Sci; 2013 Jun; 96(6):3449-60. PubMed ID: 23548297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values.
    Gonçalves LDDA; Piccoli RH; Peres AP; Saúde AV
    Braz J Microbiol; 2017; 48(2):352-358. PubMed ID: 28110805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Focus on the Death Kinetics in Predictive Microbiology: Benefits and Limits of the Most Important Models and Some Tools Dealing with Their Application in Foods.
    Bevilacqua A; Speranza B; Sinigaglia M; Corbo MR
    Foods; 2015 Oct; 4(4):565-580. PubMed ID: 28231222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial modeling in foods.
    Whiting RC
    Crit Rev Food Sci Nutr; 1995 Nov; 35(6):464-94. PubMed ID: 8777014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial growth curves: what the models tell us and what they cannot.
    Peleg M; Corradini MG
    Crit Rev Food Sci Nutr; 2011 Dec; 51(10):917-45. PubMed ID: 21955092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013.
    Lee YJ; Jung BS; Kim KT; Paik HD
    Meat Sci; 2015 Sep; 107():20-5. PubMed ID: 25930109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.
    Huang L
    J Food Sci; 2008 Jun; 73(5):E235-42. PubMed ID: 18576996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 degrees C.
    Juneja VK; Melendres MV; Huang L; Subbiah J; Thippareddi H
    Int J Food Microbiol; 2009 May; 131(2-3):106-11. PubMed ID: 19251333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of microbial activity and prediction of shelf life for packed fresh fish.
    Dalgaard P
    Int J Food Microbiol; 1995 Aug; 26(3):305-17. PubMed ID: 7488526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.
    Huang L
    J Food Sci; 2016 Jul; 81(7):M1754-65. PubMed ID: 27259065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effect of temperature on growth of Salmonella in chicken.
    Juneja VK; Valenzuela Melendres M; Huang L; Gumudavelli V; Subbiah J; Thippareddi H
    Food Microbiol; 2007 Jun; 24(4):328-35. PubMed ID: 17189758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.
    Dominguez SA; Schaffner DW
    Int J Food Microbiol; 2007 Dec; 120(3):287-95. PubMed ID: 17949841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of modelling approaches for the prediction of kinetic growth parameters of
    Tarlak F; Costa JCCP
    Food Sci Technol Int; 2023 Sep; 29(6):631-640. PubMed ID: 35642261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.