BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2433427)

  • 21. Actions of the histrionicotoxins at the ion channel of the nicotinic acetylcholine receptor and at the voltage-sensitive ion channels of muscle membranes.
    Spivak CE; Maleque MA; Oliveira AC; Masukawa LM; Tokuyama T; Daly JW; Albuquerque EX
    Mol Pharmacol; 1982 Mar; 21(2):351-61. PubMed ID: 6285171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist.
    Varanda WA; Aracava Y; Sherby SM; VanMeter WG; Eldefrawi ME; Albuquerque EX
    Mol Pharmacol; 1985 Aug; 28(2):128-37. PubMed ID: 2410768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nicotinic acetylcholine receptor ion channel blockade by cocaine: the mechanism of synaptic action.
    Swanson KL; Albuquerque EX
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1202-10. PubMed ID: 2447267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of organophosphorus anticholinesterases on nicotinic receptor ion channels at adult mouse muscle endplates.
    Tattersall JE
    Br J Pharmacol; 1990 Oct; 101(2):349-57. PubMed ID: 1701677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration-dependent effects of neostigmine on the endplate acetylcholine receptor channel complex.
    Fiekers JF
    J Neurosci; 1985 Feb; 5(2):502-14. PubMed ID: 2579218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiological estimation of the actions of acetylcholinesterase inhibitors on acetylcholine receptor and cholinesterase in physically isolated Aplysia neurones.
    Oyama Y; Hori N; Evans ML; Allen CN; Carpenter DO
    Br J Pharmacol; 1989 Mar; 96(3):573-82. PubMed ID: 2720293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Echothiophate and cogeners decrease the voltage dependence of end-plate current decay in frog skeletal muscle.
    Henderson EG; Post-Munson DJ; Reynolds LS; Epstein PM
    J Pharmacol Exp Ther; 1989 Dec; 251(3):810-6. PubMed ID: 2481033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Independent control of channel closure and block of open channels by methylxanthines at acetylcholine receptors in frog.
    Silinsky EM; Vogel SM
    J Physiol; 1987 Sep; 390():33-44. PubMed ID: 2450993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differentiation of the open and closed states of the ionic channels of nicotinic acetylcholine receptors by tricyclic antidepressants.
    Schofield GG; Witkop B; Warnick JE; Albuquerque EX
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):5240-4. PubMed ID: 6272297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of chloramphenicol isomers on the motor end-plate nicotinic receptor-ion channel complex.
    Henderson F; Prior C; Dempster J; Marshall IG
    Mol Pharmacol; 1986 Jan; 29(1):52-64. PubMed ID: 2418348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organophosphate and carbamate compounds have pre- and postjunctional effects at the insect glutamatergic synapse.
    Idriss MK; Aguayo LG; Rickett DL; Albuquerque EX
    J Pharmacol Exp Ther; 1986 Oct; 239(1):279-85. PubMed ID: 2876093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Desensitization shortens the high-quantal-content endplate current time course in frog muscle with intact cholinesterase.
    Giniatullin RA; Talantova M; Vyskocil F
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):641-8. PubMed ID: 9279814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of d-tubocurarine with the nicotinic acetylcholine receptor/channel molecule.
    Shaker N; Eldefrawi AT; Aguayo LG; Warnick JE; Albuquerque EX; Eldefrawi ME
    J Pharmacol Exp Ther; 1982 Jan; 220(1):172-7. PubMed ID: 6273528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methamidophos: an anticholinesterase without significant effects on postsynaptic receptors or transmitter release.
    Camara AL; Braga MF; Rocha ES; Santos MD; Cortes WS; Cintra WM; Aracava Y; Maelicke A; Albuguergue EX
    Neurotoxicology; 1997; 18(2):589-602. PubMed ID: 9291508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiamine blockade of neuromuscular transmission.
    Enomoto K; Edwards C
    Brain Res; 1985 Dec; 358(1-2):316-23. PubMed ID: 2416387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of a monoclonal anti-acetylcholine receptor antibody on the avian end-plate.
    Maselli RA; Nelson DJ; Richman DP
    J Physiol; 1989 Apr; 411():271-83. PubMed ID: 2614725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetraethylammonium: voltage-dependent action on endplate conductance and inhibition of ligand binding to postsynaptic proteins.
    Adler M; Oliveira AC; Eldefrawi ME; Eldefrawi AT; Albuquerque EX
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):531-5. PubMed ID: 284372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of blockade of axonal transport on endplate currents of muscle fibers in the frog].
    Volkov EM; Poletaev GI
    Neirofiziologiia; 1985; 17(2):204-11. PubMed ID: 2582281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blockade and recovery of the acetylcholine receptor produced by a thienyl analog of phencyclidine: influence of voltage, temperature, frequency of stimulation and conditioning pulse duration.
    Aguayo LG; Albuquerque EX
    J Pharmacol Exp Ther; 1986 Oct; 239(1):25-31. PubMed ID: 3489836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Halothane and isoflurane alter acetylcholine activated ion channel kinetics.
    Sokoll MD; Davies LR; Bhattacharyya B; Zwagerman DQ
    Eur J Pharmacol; 1989 Nov; 173(1):27-34. PubMed ID: 2481594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.