These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 24334333)

  • 1. Fabrics coated with lubricated nanostructures display robust omniphobicity.
    Shillingford C; MacCallum N; Wong TS; Kim P; Aizenberg J
    Nanotechnology; 2014 Jan; 25(1):014019. PubMed ID: 24334333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear.
    Damle VG; Tummala A; Chandrashekar S; Kido C; Roopesh A; Sun X; Doudrick K; Chinn J; Lee JR; Burgin TP; Rykaczewski K
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4224-32. PubMed ID: 25633081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates.
    Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Nano Lett; 2013 Apr; 13(4):1793-9. PubMed ID: 23464578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application.
    Wang C; Guo Z
    Nanoscale; 2020 Nov; 12(44):22398-22424. PubMed ID: 33174577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorine-free, liquid-repellent surfaces made from ionic liquid-infused nanostructured silicon.
    Bittner RW; Bica K; Hoffmann H
    Monatsh Chem; 2017; 148(1):167-177. PubMed ID: 28127102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use.
    Das I; De G
    Sci Rep; 2015 Dec; 5():18503. PubMed ID: 26678754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process.
    Shirgholami MA; Khalil-Abad MS; Khajavi R; Yazdanshenas ME
    J Colloid Interface Sci; 2011 Jul; 359(2):530-5. PubMed ID: 21536303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability.
    Boban M; Golovin K; Tobelmann B; Gupte O; Mabry JM; Tuteja A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11406-11413. PubMed ID: 29554432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.
    Sasaki K; Tenjimbayashi M; Manabe K; Shiratori S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):651-9. PubMed ID: 26595458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.
    Cao M; Guo D; Yu C; Li K; Liu M; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3615-23. PubMed ID: 26447551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed Lubricant Depletion of Slippery Liquid Infused Porous Surfaces Using Precision Nanostructures.
    Laney SK; Michalska M; Li T; Ramirez FV; Portnoi M; Oh J; Thayne IG; Parkin IP; Tiwari MK; Papakonstantinou I
    Langmuir; 2021 Aug; 37(33):10071-10078. PubMed ID: 34286995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotton fabrics with single-faced superhydrophobicity.
    Liu Y; Xin JH; Choi CH
    Langmuir; 2012 Dec; 28(50):17426-34. PubMed ID: 23186211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Fluorine-Free and Self-Healing Superhydrophobic Coatings by H
    Lahiri SK; Zhang P; Zhang C; Liu L
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10262-10275. PubMed ID: 30761888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.
    Hoshian S; Jokinen V; Somerkivi V; Lokanathan AR; Franssila S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):941-9. PubMed ID: 25522296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Effects of Lubricant Infusion Methods on Polymer SLIPS.
    Casey M; Dano F; Busch T; Aboud DGK; Kietzig AM
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):37328-37337. PubMed ID: 38954598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor-etching honeycomb-like zinc plating layer for constructing anti-corrosion lubricant-infused surfaces.
    Song X; Li N; Wang Z; Li S; Hou Y
    Front Chem; 2023; 11():1273674. PubMed ID: 37841209
    [No Abstract]   [Full Text] [Related]  

  • 19. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability.
    Zhang P; Wang S; Wang S; Jiang L
    Small; 2015 Apr; 11(16):1939-46. PubMed ID: 25504764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.