BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24334382)

  • 1. A divide and conquer approach for construction of large-scale signaling networks from PPI and RNAi data using linear programming.
    Ozsoy OE; Can T
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):869-83. PubMed ID: 24334382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale signaling network reconstruction.
    Hashemikhabir S; Ayaz ES; Kavurucu Y; Can T; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1696-708. PubMed ID: 23221085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Signaling Pathways with RNAi Data and Multiple Reference Networks.
    Alim MA; Ay A; Hasan MM; Thai MT; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1079-1091. PubMed ID: 30102599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the topology of signaling networks from partial RNAi data.
    Ren Y; Wang Q; Hasan MM; Ay A; Kahveci T
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):53. PubMed ID: 27490106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.
    Knapp B; Kaderali L
    PLoS One; 2013; 8(7):e69220. PubMed ID: 23935958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iPoint: an integer programming based algorithm for inferring protein subnetworks.
    Atias N; Sharan R
    Mol Biosyst; 2013 Jul; 9(7):1662-9. PubMed ID: 23385645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of signaling network from protein interactions based on function annotations.
    Liu W; Li D; Zhu Y; Xie H; He F
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):514-21. PubMed ID: 23929874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y; Lin H; Yang Z; Wang J; Li Y; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):729-41. PubMed ID: 24091405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative pathway approach for automating analysis and validation of cell perturbation networks and design of perturbation experiments.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2007 Dec; 1115():267-85. PubMed ID: 17925355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.
    Koneru SV; Bhavani DS
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):729-37. PubMed ID: 26357311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks.
    Liang C; Luo J; Song D
    Mol Biosyst; 2014 Jul; 10(9):2277-88. PubMed ID: 24964354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
    Röhl A; Bockmayr A
    BMC Bioinformatics; 2017 Jan; 18(1):2. PubMed ID: 28049424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage.
    Hüffner F; Komusiewicz C; Liebtrau A; Niedermeier R
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):455-67. PubMed ID: 26356014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChainRank, a chain prioritisation method for contextualisation of biological networks.
    Tényi Á; de Atauri P; Gomez-Cabrero D; Cano I; Clarke K; Falciani F; Cascante M; Roca J; Maier D
    BMC Bioinformatics; 2016 Jan; 17():17. PubMed ID: 26729273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic modeling of signaling pathways by network flow model.
    Zhao XM; Wang RS; Chen L; Aihara K
    J Bioinform Comput Biol; 2009 Apr; 7(2):309-22. PubMed ID: 19340917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering signal transduction networks from high-throughput data by integer linear programming.
    Zhao XM; Wang RS; Chen L; Aihara K
    Nucleic Acids Res; 2008 May; 36(9):e48. PubMed ID: 18411207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying protein complexes based on multiple topological structures in PPI networks.
    Chen B; Wu FX
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):165-72. PubMed ID: 23974659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.