These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24334389)

  • 1. Analytical solution of steady-state equations for chemical reaction networks with bilinear rate laws.
    Halász AM; Lai HJ; McCabe Pryor M; Radhakrishnan K; Edwards JS
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):957-69. PubMed ID: 24334389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable elimination in post-translational modification reaction networks with mass-action kinetics.
    Feliu E; Wiuf C
    J Math Biol; 2013 Jan; 66(1-2):281-310. PubMed ID: 22311196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistationarity in Structured Reaction Networks.
    Dickenstein A; Millán MP; Shiu A; Tang X
    Bull Math Biol; 2019 May; 81(5):1527-1581. PubMed ID: 30788691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximations and their consequences for dynamic modelling of signal transduction pathways.
    Millat T; Bullinger E; Rohwer J; Wolkenhauer O
    Math Biosci; 2007 May; 207(1):40-57. PubMed ID: 17070871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphical reduction of reaction networks by linear elimination of species.
    Sáez M; Wiuf C; Feliu E
    J Math Biol; 2017 Jan; 74(1-2):195-237. PubMed ID: 27221101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing Weakly Reversible Deficiency Zero Network Translations Using Elementary Flux Modes.
    Johnston MD; Burton E
    Bull Math Biol; 2019 May; 81(5):1613-1644. PubMed ID: 30790189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical approach for detecting switch-like bistability in mass action chemical reaction networks with conservation laws.
    Reyes BC; Otero-Muras I; Petyuk VA
    BMC Bioinformatics; 2022 Jan; 23(1):1. PubMed ID: 34983366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.
    Rosenblatt M; Timmer J; Kaschek D
    Front Cell Dev Biol; 2016; 4():41. PubMed ID: 27243005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent Decompositions of Chemical Reaction Networks.
    Hernandez BS; De la Cruz RJL
    Bull Math Biol; 2021 May; 83(7):76. PubMed ID: 34008093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable IL- 1β-Activation in an Inflammasome Signalling Model Depends on Positive and Negative Feedbacks and Tight Regulation of Protein Production.
    Lopez-Caamal F; Huber HJ
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):627-637. PubMed ID: 29994183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistationarity in mass action networks with applications to ERK activation.
    Conradi C; Flockerzi D
    J Math Biol; 2012 Jul; 65(1):107-56. PubMed ID: 21744175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-steady-state laws in enzyme kinetics.
    Li B; Shen Y; Li B
    J Phys Chem A; 2008 Mar; 112(11):2311-21. PubMed ID: 18303867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joining and decomposing reaction networks.
    Gross E; Harrington H; Meshkat N; Shiu A
    J Math Biol; 2020 May; 80(6):1683-1731. PubMed ID: 32123964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Reaction-Based Model of the State Space of Chemical Reaction Systems Enables Efficient Simulations.
    Lecca P; Re A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):469-482. PubMed ID: 30676973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient calculation of steady state probability distribution for stochastic biochemical reaction network.
    Karim S; Buzzard GT; Umulis DM
    BMC Genomics; 2012; 13 Suppl 6(Suppl 6):S10. PubMed ID: 23134718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A technique for determining the signs of sensitivities of steady states in chemical reaction networks.
    Sontag ED
    IET Syst Biol; 2014 Dec; 8(6):251-67. PubMed ID: 25478700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady state detection of chemical reaction networks using a simplified analytical method.
    Martínez-Forero I; Peláez-López A; Villoslada P
    PLoS One; 2010 Jun; 5(6):e10823. PubMed ID: 20532219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks.
    Dräger A; Hassis N; Supper J; Schröder A; Zell A
    BMC Syst Biol; 2008 Apr; 2():39. PubMed ID: 18447902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Promising Method for Calculating True Steady-State Metabolite Concentrations in Large-Scale Metabolic Reaction Network Models.
    Miyawaki-Kuwakado A; Komori S; Shiraishi F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):27-36. PubMed ID: 30004883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.