These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24334693)

  • 1. Characteristics of a real time monitor using the interference enhanced reflection method for organic vapors.
    Hori H; Ishimatsu S; Fueta Y; Hinoue M; Ishidao T
    J UOEH; 2013 Dec; 35(4):267-72. PubMed ID: 24334693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of sensor characteristics of three real-time monitors for organic vapors.
    Hori H; Ishimatsu S; Fueta Y; Hinoue M; Ishidao T
    J Occup Health; 2015; 57(1):13-9. PubMed ID: 25422129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Sensing characteristics of a real-time monitor using a photoionization detector on organic solvent vapors].
    Hori H; Ishematsu S; Fueta Y; Hinoue M; Ishidao T
    J UOEH; 2012 Dec; 34(4):363-8. PubMed ID: 23270260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Evaluation of individual exposure to organic solvents using a portable VOC monitor].
    Enomoto M
    Sangyo Eiseigaku Zasshi; 2006 Nov; 48(6):214-20. PubMed ID: 17170515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors.
    Hori H; Noritake Y; Murobushi H; Higashi T; Tanaka I
    Appl Occup Environ Hyg; 1999 Aug; 14(8):558-64. PubMed ID: 10462851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.
    Zhang SX; Chai XS; Barnes DG
    J Chromatogr A; 2016 Feb; 1435():1-5. PubMed ID: 26850316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.
    Hori H; Ishidao T; Ishimatsu S
    J UOEH; 2010 Dec; 32(4):293-302. PubMed ID: 21226420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems.
    de Blas M; Navazo M; Alonso L; Durana N; Iza J
    Sci Total Environ; 2011 Nov; 409(24):5459-69. PubMed ID: 21978614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.
    Limero TF; Nazarov EG; Menlyadiev M; Eiceman GA
    Analyst; 2015 Feb; 140(3):922-30. PubMed ID: 25501714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column.
    Zhu X; Sun J; Ning Z; Zhang Y; Liu J
    Rev Sci Instrum; 2016 Apr; 87(4):044102. PubMed ID: 27131686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.
    Bouchard D; Wanner P; Luo H; McLoughlin PW; Henderson JK; Pirkle RJ; Hunkeler D
    J Chromatogr A; 2017 Oct; 1520():23-34. PubMed ID: 28935261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a new respirator for organic vapors with a breakthrough detector using a semiconductor gas sensor.
    Hori H; Ishidao T; Ishimatsu S
    Appl Occup Environ Hyg; 2003 Feb; 18(2):90-5. PubMed ID: 12519683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of mononitrotoluenes in aquatic environment using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.
    Sobhi HR; Kashtiaray A; Farahani H; Javaheri M; Ganjali MR
    J Hazard Mater; 2010 Mar; 175(1-3):279-83. PubMed ID: 19880251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vaporizing characteristics of mixed-solvents in indoor environment.
    Chen ML; Uang MS; Mao IF
    Sci Total Environ; 1997 Oct; 205(2-3):129-35. PubMed ID: 9372625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some insights into analytical bias involved in the application of grab sampling for volatile organic compounds: a case study against used Tedlar bags.
    Ghosh S; Kim KH; Sohn JR
    ScientificWorldJournal; 2011; 11():2160-77. PubMed ID: 22235175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized micromachined gas chromatography with universal and selective detectors for targeted volatile compounds analysis.
    Gras R; Luong J; Shellie RA
    J Chromatogr A; 2018 Oct; 1573():151-155. PubMed ID: 30217384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of the response of some portable, direct-reading 10.2 eV and 11.8 eV photoionization detectors, and a flame ionization gas chromatograph for organic vapors in high humidity atmospheres.
    Barsky JB; Que Hee SS; Clark CS
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):9-14. PubMed ID: 4025151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of solvent extraction and thermal desorption methods for determining a wide range of volatile organic compounds in ambient air.
    Ramírez N; Cuadras A; Rovira E; Borrull F; Marcé RM
    Talanta; 2010 Jul; 82(2):719-27. PubMed ID: 20602960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Determination of organic solvent vapors by a gas monitoring badge. An experimental study on the response time].
    Kodama Y; Matsuno K; Tanaka I; Akiyama T
    Sangyo Igaku; 1983 May; 25(3):181-5. PubMed ID: 6655986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The design and evaluation of horizontal pipe mini-flame atomization and ionization synchronous detector in GC/AAS].
    Yan Z; Sun JM; Qiao YQ; Sun HW
    Se Pu; 2001 Jan; 19(1):32-6. PubMed ID: 12541842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.