These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The clinical course of an overgrowth syndrome, from diagnosis in infancy through adulthood: the case of Beckwith-Wiedemann syndrome. Pappas JG Curr Probl Pediatr Adolesc Health Care; 2015 Apr; 45(4):112-7. PubMed ID: 25861997 [TBL] [Abstract][Full Text] [Related]
5. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Azzi S; Rossignol S; Steunou V; Sas T; Thibaud N; Danton F; Le Jule M; Heinrichs C; Cabrol S; Gicquel C; Le Bouc Y; Netchine I Hum Mol Genet; 2009 Dec; 18(24):4724-33. PubMed ID: 19755383 [TBL] [Abstract][Full Text] [Related]
7. Imprinted anomalies in fetal and childhood growth disorders: the model of Russell-Silver and Beckwith-Wiedemann syndromes. Netchine I; Rossignol S; Azzi S; Brioude F; Le Bouc Y Endocr Dev; 2012; 23():60-70. PubMed ID: 23182821 [TBL] [Abstract][Full Text] [Related]
8. Epigenetic anomalies in childhood growth disorders. Netchine I; Rossignol S; Azzi S; Le Bouc Y Nestle Nutr Inst Workshop Ser; 2013; 71():65-73. PubMed ID: 23502140 [TBL] [Abstract][Full Text] [Related]
9. New insights into the pathogenesis of Beckwith-Wiedemann and Silver-Russell syndromes: contribution of small copy number variations to 11p15 imprinting defects. Demars J; Rossignol S; Netchine I; Lee KS; Shmela M; Faivre L; Weill J; Odent S; Azzi S; Callier P; Lucas J; Dubourg C; Andrieux J; Le Bouc Y; El-Osta A; Gicquel C Hum Mutat; 2011 Oct; 32(10):1171-82. PubMed ID: 21780245 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. Soejima H; Higashimoto K J Hum Genet; 2013 Jul; 58(7):402-9. PubMed ID: 23719190 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Gaston V; Le Bouc Y; Soupre V; Burglen L; Donadieu J; Oro H; Audry G; Vazquez MP; Gicquel C Eur J Hum Genet; 2001 Jun; 9(6):409-18. PubMed ID: 11436121 [TBL] [Abstract][Full Text] [Related]
12. Epigenotype, genotype, and phenotype analysis of patients in Taiwan with Beckwith-Wiedemann syndrome. Lin HY; Chuang CK; Tu RY; Fang YY; Su YN; Chen CP; Chang CY; Liu HC; Chu TH; Niu DM; Lin SP Mol Genet Metab; 2016 Sep; 119(1-2):8-13. PubMed ID: 27436784 [TBL] [Abstract][Full Text] [Related]
15. Clinical and molecular characterization of Beckwith-Wiedemann syndrome in a Chinese population. Luk HM J Pediatr Endocrinol Metab; 2017 Jan; 30(1):89-95. PubMed ID: 27977403 [TBL] [Abstract][Full Text] [Related]
16. Clinical and molecular features of children with Beckwith-Wiedemann syndrome in China: a single-center retrospective cohort study. Wang R; Xiao Y; Li D; Hu H; Li X; Ge T; Yu R; Wang Y; Zhang T Ital J Pediatr; 2020 Apr; 46(1):55. PubMed ID: 32349794 [TBL] [Abstract][Full Text] [Related]
17. Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Abi Habib W; Azzi S; Brioude F; Steunou V; Thibaud N; Das Neves C; Le Jule M; Chantot-Bastaraud S; Keren B; Lyonnet S; Michot C; Rossi M; Pasquier L; Gicquel C; Rossignol S; Le Bouc Y; Netchine I Hum Mol Genet; 2014 Nov; 23(21):5763-73. PubMed ID: 24916376 [TBL] [Abstract][Full Text] [Related]