BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24335144)

  • 1. Human NELL1 protein augments constructive tissue remodeling with biologic scaffolds.
    Turner NJ; Londono R; Dearth CL; Culiat CT; Badylak SF
    Cells Tissues Organs; 2013; 198(4):249-65. PubMed ID: 24335144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model.
    Boruch AV; Nieponice A; Qureshi IR; Gilbert TW; Badylak SF
    J Surg Res; 2010 Jun; 161(2):217-25. PubMed ID: 19577253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.
    Dearth CL; Slivka PF; Stewart SA; Keane TJ; Tay JK; Londono R; Goh Q; Pizza FX; Badylak SF
    Acta Biomater; 2016 Feb; 31():50-60. PubMed ID: 26612417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury.
    Turner NJ; Badylak JS; Weber DJ; Badylak SF
    J Surg Res; 2012 Aug; 176(2):490-502. PubMed ID: 22341350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologic scaffold composed of skeletal muscle extracellular matrix.
    Wolf MT; Daly KA; Reing JE; Badylak SF
    Biomaterials; 2012 Apr; 33(10):2916-25. PubMed ID: 22264525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template.
    Zhang J; Hu ZQ; Turner NJ; Teng SF; Cheng WY; Zhou HY; Zhang L; Hu HW; Wang Q; Badylak SF
    Biomaterials; 2016 May; 89():114-26. PubMed ID: 26963901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration.
    Badylak SF; Dziki JL; Sicari BM; Ambrosio F; Boninger ML
    Biomaterials; 2016 Oct; 103():128-136. PubMed ID: 27376561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional skeletal muscle formation with a biologic scaffold.
    Valentin JE; Turner NJ; Gilbert TW; Badylak SF
    Biomaterials; 2010 Oct; 31(29):7475-84. PubMed ID: 20638716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linked collagen-chondroitin sulfate-hyaluronic acid imitating extracellular matrix as scaffold for dermal tissue engineering.
    Wang W; Zhang M; Lu W; Zhang X; Ma D; Rong X; Yu C; Jin Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):269-79. PubMed ID: 19530938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance.
    Keane TJ; Swinehart IT; Badylak SF
    Methods; 2015 Aug; 84():25-34. PubMed ID: 25791470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction.
    Zantop T; Gilbert TW; Yoder MC; Badylak SF
    J Orthop Res; 2006 Jun; 24(6):1299-309. PubMed ID: 16649228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extracellular matrix as a biologic scaffold material.
    Badylak SF
    Biomaterials; 2007 Sep; 28(25):3587-93. PubMed ID: 17524477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix.
    Sicari BM; Dziki JL; Siu BF; Medberry CJ; Dearth CL; Badylak SF
    Biomaterials; 2014 Oct; 35(30):8605-12. PubMed ID: 25043569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype.
    Dziki JL; Wang DS; Pineda C; Sicari BM; Rausch T; Badylak SF
    J Biomed Mater Res A; 2017 Jan; 105(1):138-147. PubMed ID: 27601305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue.
    Xu Q; Shanti RM; Zhang Q; Cannady SB; O'Malley BW; Le AD
    Tissue Eng Part A; 2017 Apr; 23(7-8):301-312. PubMed ID: 27923325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decellularized Swine Dental Pulp Tissue for Regenerative Root Canal Therapy.
    Alqahtani Q; Zaky SH; Patil A; Beniash E; Ray H; Sfeir C
    J Dent Res; 2018 Dec; 97(13):1460-1467. PubMed ID: 30067420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cell debris within biologic scaffolds upon the macrophage response.
    Londono R; Dziki JL; Haljasmaa E; Turner NJ; Leifer CA; Badylak SF
    J Biomed Mater Res A; 2017 Aug; 105(8):2109-2118. PubMed ID: 28263432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching.
    Gilbert TW; Stewart-Akers AM; Sydeski J; Nguyen TD; Badylak SF; Woo SL
    Tissue Eng; 2007 Jun; 13(6):1313-23. PubMed ID: 17518717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.