These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 24335146)

  • 1. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments.
    Kheradpour P; Kellis M
    Nucleic Acids Res; 2014 Mar; 42(5):2976-87. PubMed ID: 24335146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data.
    Ding J; Hu H; Li X
    Nucleic Acids Res; 2014 Mar; 42(5):e35. PubMed ID: 24322294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DREME: motif discovery in transcription factor ChIP-seq data.
    Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1653-9. PubMed ID: 21543442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EXTREME: an online EM algorithm for motif discovery.
    Quang D; Xie X
    Bioinformatics; 2014 Jun; 30(12):1667-73. PubMed ID: 24532725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring direct DNA binding from ChIP-seq.
    Bailey TL; Machanick P
    Nucleic Acids Res; 2012 Sep; 40(17):e128. PubMed ID: 22610855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium.
    Wang J; Zhuang J; Iyer S; Lin XY; Greven MC; Kim BH; Moore J; Pierce BG; Dong X; Virgil D; Birney E; Hung JH; Weng Z
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D171-6. PubMed ID: 23203885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Set cover-based methods for motif selection.
    Li Y; Liu Y; Juedes D; Drews F; Bunescu R; Welch L
    Bioinformatics; 2020 Feb; 36(4):1044-1051. PubMed ID: 31665223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSMC: Combining Parallel Gibbs Sampling with Maximal Cliques for Hunting DNA Motif.
    Pei C; Wang SL; Fang J; Zhang W
    J Comput Biol; 2017 Dec; 24(12):1243-1253. PubMed ID: 29116820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constrained transcription factor spacing is prevalent and important for transcriptional control of mouse blood cells.
    Ng FS; Schütte J; Ruau D; Diamanti E; Hannah R; Kinston SJ; Göttgens B
    Nucleic Acids Res; 2014 Dec; 42(22):13513-24. PubMed ID: 25428352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.
    Zhang Y; Wang P
    Biomed Res Int; 2015; 2015():218068. PubMed ID: 26236718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis.
    Boeva V; Surdez D; Guillon N; Tirode F; Fejes AP; Delattre O; Barillot E
    Nucleic Acids Res; 2010 Jun; 38(11):e126. PubMed ID: 20375099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data.
    Goi C; Little P; Xie C
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets.
    Ikebata H; Yoshida R
    Bioinformatics; 2015 May; 31(10):1561-8. PubMed ID: 25583120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets.
    Thomas-Chollier M; Herrmann C; Defrance M; Sand O; Thieffry D; van Helden J
    Nucleic Acids Res; 2012 Feb; 40(4):e31. PubMed ID: 22156162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS.
    Ding J; Dhillon V; Li X; Hu H
    Methods; 2015 Jun; 79-80():47-51. PubMed ID: 25171961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.