These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24335220)

  • 1. A novel optic flow pattern speeds split-belt locomotor adaptation.
    Finley JM; Statton MA; Bastian AJ
    J Neurophysiol; 2014 Mar; 111(5):969-76. PubMed ID: 24335220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow.
    Mahon CE; Hendershot BD; Gaskins C; Hatfield BD; Shaw EP; Gentili RJ
    Exp Brain Res; 2023 Jul; 241(7):1945-1958. PubMed ID: 37358569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and Slow Adaptations of Interlimb Coordination
    Aoi S; Amano T; Fujiki S; Senda K; Tsuchiya K
    Front Robot AI; 2021; 8():697612. PubMed ID: 34422913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.
    Yokoyama H; Sato K; Ogawa T; Yamamoto SI; Nakazawa K; Kawashima N
    PLoS One; 2018; 13(4):e0194875. PubMed ID: 29694404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor adaptation.
    Torres-Oviedo G; Vasudevan E; Malone L; Bastian AJ
    Prog Brain Res; 2011; 191():65-74. PubMed ID: 21741544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
    Mukherjee M; Eikema DJ; Chien JH; Myers SA; Scott-Pandorf M; Bloomberg JJ; Stergiou N
    Exp Brain Res; 2015 Oct; 233(10):3005-12. PubMed ID: 26169104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input.
    Prokop T; Berger W; Zijlstra W; Dietz V
    Exp Brain Res; 1995; 106(3):449-56. PubMed ID: 8983988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taking advantage of external mechanical work to reduce metabolic cost: the mechanics and energetics of split-belt treadmill walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Physiol; 2019 Aug; 597(15):4053-4068. PubMed ID: 31192458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visuomotor errors drive step length and step time adaptation during 'virtual' split-belt walking: the effects of reinforcement feedback.
    Sato S; Cui A; Choi JT
    Exp Brain Res; 2022 Feb; 240(2):511-523. PubMed ID: 34816293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats.
    Frigon A; Hurteau MF; Thibaudier Y; Leblond H; Telonio A; D'Angelo G
    J Neurosci; 2013 May; 33(19):8559-66. PubMed ID: 23658193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor adaptation and locomotor adaptive learning in Parkinson's disease and normal aging.
    Roemmich RT; Nocera JR; Stegemöller EL; Hassan A; Okun MS; Hass CJ
    Clin Neurophysiol; 2014 Feb; 125(2):313-9. PubMed ID: 23916406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.